金属热处理 ›› 2021, Vol. 46 ›› Issue (5): 213-217.DOI: 10.13251/j.issn.0254-6051.2021.05.037

• 表面工程 • 上一篇    下一篇

激光功率对高速激光熔覆Ni/316L层组织与力学性能的影响

刘德来1, 王博2, 周攀虎3, 董会3, 鲍正宇3   

  1. 1.古交西山发电有限公司, 山西 太原 030082;
    2.西安热工研究院有限公司, 陕西 西安 710054;
    3.西安石油大学 材料科学与工程学院 西安市高性能油气田材料重点实验室, 陕西 西安 710065
  • 收稿日期:2020-10-17 出版日期:2021-05-25 发布日期:2021-07-21
  • 通讯作者: 董 会,副教授,博士,E-mail:donghuihyy@163.com
  • 作者简介:刘德来(1973—),男,高级工程师,学士,主要研究方向为热能动力工程,E-mail:1510764339@qq.com。
  • 基金资助:
    陕西省自然科学基金(2020JM-540)

Effect of laser power on microstructure and mechanical properties of high-speed laser clad Ni/316L layer

Liu Delai1, Wang Bo2, Zhou Panhu3, Dong Hui3, Bao Zhengyu3   

  1. 1. Gujiao Xishan Power Generation Co., Ltd., Taiyuan Shanxi 030082, China;
    2. Xi'an Thermal Power Research Institute Co., Ltd., Xi'an Shaanxi 710054, China;
    3. Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China
  • Received:2020-10-17 Online:2021-05-25 Published:2021-07-21

摘要: 为研究高速激光熔覆Ni/316L层组织与力学性能随激光功率的演变规律,分别采用1.1、1.3 和1.5 kW激光功率在Q235钢表面熔覆Ni/316L层。采用扫描电镜(SEM)、能谱仪(EDS)、显微硬度计、冲击试验机及Knoop压痕法研究了熔覆层的显微组织、显微硬度、冲击性能与弹性模量。结果表明,激光功率为1.1 kW时熔覆层内部晶粒生长取向存在垂直于界面生长和与界面成一定角度交叉生长两种模式,并含有少量孔隙等缺陷,熔覆层/基体界面元素成断崖式分布,二者互扩散程度较低。随着激光功率升高,熔覆层晶粒转变为以垂直于界面生长为主,且涂层内部致密性高,缺陷较少,熔覆层/基体界面元素互扩散程度提升。激光功率对熔覆层硬度、冲击性能都存在显著影响,但是对弹性模量的影响较低。不同激光功率下,熔覆层最大硬度均出现在距界面100 μm左右的区域;功率从1.1 kW提升至1.5 kW时熔覆层熔合区最大硬度提高约50%;功率为1.5 kW时,试样的冲击性能较基体提高约20%。

关键词: 高速激光熔覆, 激光功率, 显微组织, 力学性能

Abstract: In order to evaluate the effect of laser power on microstructure and mechanical properties of the Ni/316L layer deposited via high-speed laser cladding, the Ni/316L layer was clad on the Q235 steel surface under laser power of 1.1, 1.3, and 1.5 kW respectively. The microstructure, Vickers hardness, impact property and elastic modulus of the laser clad layers were examined by means of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Vickers hardness tester, impact testing machine and Knoop indentation method. The results show that when the laser power is 1.1 kW, the grain growth in the laser clad layer contains perpendicular-to-interface growth mode and slant growth mode, the clad layer also has a small amount of pores and other defects, and the elements at the clad layer/substrate interface are distributed in a cliff-like manner, which means that the element diffusion between the substrate and the clad layer is limited. As the laser power increases, the perpendicular-to-interface growth mode of grains becomes the main mode, and the porosity of the clad layer is lower and the defect is less, the interdiffusion degree of elements at the clad layer/substrate interface is improved. The laser power has a significant effect on hardness and impact property of the clad layer, but has little effect on elastic modulus. The maximum hardness of the clad layer with different laser power is always about 100 μm away from the interface. When the laser power increases from 1.1 kW to 1.5 kW, the maximum hardness of the clad layer fusion zone is increased by about 50%, and the impact property of the clad layer specimen is about 20% higher than that of the substrate when the laser power is 1.5 kW.

Key words: high-speed laser cladding, laser power, microstructure, mechanical properties

中图分类号: