[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]褚延朋, 贾云柯, 李 杰, 等. 高熵合金相转变规律的研究进展[J]. 金属热处理, 2019, 44(11): 19-24. Chu Yanpeng, Jia Yunke, Li Jie, et al. Research progress of phase transformation law of high entropy alloys[J]. Heat Treatment of Metals, 2019, 44(11): 19-24. [3]张 越, 刘 亮, 商 剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian. Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [4]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [5]陈 阳, 彭 静, 李 甲, 等. 高熵合金辐照硬化与力学性能研究[J]. 固体力学学报, 2020, 41(6): 600-613. Chen Yang, Peng Jing, Li Jia, et al. Irradiation hardening and mechanical properties of high-entropy alloy[J]. Chinese Journal of Solid Mechanics, 2020, 41(6): 600-613. [6]Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. [7]贾智轩, 褚延朋, 冯运莉, 等. 高熵合金制备及热处理工艺研究进展[J]. 金属热处理, 2020, 45(10): 17-23. Jia Zhixuan, Chu Yanpeng, Feng Yunli, et al. Research progress in preparation and heat treatment of high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(10): 17-23. [8]Liang Y J, Wang L, Wen Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9(1): 1-8. [9]Chen S, Oh H S, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy[J]. Nature Communications, 2020, 11(1): 1-8. [10]Lu W, Liebscher C H, Yan F, et al. Interfacial nanophases stabilize nanotwins in high-entropy alloys[J]. Acta Materialia, 2020, 185: 218-232. [11]Su J, Raabe D, Li Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. Acta Materialia, 2019, 163: 40-54. [12]Shukla S, Choudhuri D, Wang T, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy[J]. Materials Research Letters, 2018, 6(12): 676-682. [13]Qiu N, Yan J, Zuo X. A novel strategy for hierarchical structure in multicomponent nano-precipitated steels by high magnetic field aging[J]. Scripta Materialia, 2021, 191: 137-142. [14]Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5 Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized[J]. Scripta Materialia, 2018, 155: 41-45. [15]Ming K, Bi X, Wang J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures[J]. International Journal of Plasticity, 2019, 113: 255-268. [16]Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538. [17]Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. [18]Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505. [19]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [20]Stepanov N D, Shaysultanov D G, Tikhonovsky M A, et al. Tensile properties of the Cr-Fe-Ni-Mn non-equiatomic multicomponent alloys with different Cr contents[J]. Materials and Design, 2015, 87: 60-65. [21]Pickering E J, Muñoz-Moreno R, Stone H J, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi[J]. Scripta Materialia, 2016, 113: 106-109. [22]Han C S, Gao H, Huang Y, et al. Mechanism-based strain gradient crystal plasticity—I. Theory[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1188-1203. [23]Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure[J]. Acta Materialia, 2019, 165: 444-458. [24]Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering: A, 2010, 527(15): 3552-3560. [25]Kireeva I V, Chumlyakov Y I, Vyrodova A V, et al. Effect of twinning on the orientation dependence of mechanical behaviour and fracture in single crystals of the equiatomic CoCrFeMnNi high-entropy alloy at 77 K[J]. Materials Science and Engineering A, 2020, 784: 139315. [26]Rahman K M, Vorontsov V A, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel[J]. Acta Materialia, 2015, 89: 247-257. |