[1]郭华锋, 孙 涛, 李菊丽, 等. 激光表面改性提高钛合金耐磨性能的研究进展[J]. 热加工工艺, 2012, 41(18): 124-129. Guo Huafeng, Sun Tao, Li Juli, et al. Research progress of improving wear resistance performance of ti alloy by laser surface modification technology[J]. Hot Working Technology, 2012, 41(18): 124-129. [2]Li Chonggui, Zhang Qunsen, Wang Feifei, et al. Microstructure and wear behaviors of WC-Ni coatings fabricated by laser cladding under high frequency micro-vibration[J]. Applied Surface Science, 2019, 485: 513-519. [3]Meng Q W, Geng L, Zhang B Y, et al. Laser cladding of Ni-base composite coatings onto Ti-6Al-4V substrates with pre-placed B4C+NiCrBSi powders[J]. Surface and Coatings Technology, 2006, 200(16/17): 4923-4928. [4]Das Mitun, Bhattacharya Kaushik, Dittrick Stanley A, et al. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 259-271. [5]Li Xiaoquan, Du Zeyu, Yang Xuguang. Hot spray technology of TA7 titanium alloy coated by molybdenum and its bonding strength[J]. China Welding, 2006, 15(3): 20-23. [6]洪子康, 骆祎岚, 朱巧莲, 等. 热处理温度对窄深槽类零件环保铬镀层组织与性能的影响[J]. 金属热处理, 2021, 46(2): 144-148. Hong Zikang, Luo Yilan, Zhu Qiaolian, et al. Effect of heat treatment temperature on microstructure and properties of environmentally friendly chromium layer of narrow and deep groove parts[J]. Heat Treatment of Metals, 2021, 46(2): 144-148. [7]Li Hong, Song Zhihui, Tang Peng. Preparation and property of modified micro-arc oxidation coating using Al2O3 particles on Ti6Al4V[J]. Rare Metal Materials and Engineering, 2020, 49(3): 755-760. [8]Weng Fei, Chen Chuanzhong, Yu Huijun. Research status of laser cladding on titanium and its alloys: A review[J]. Materials and Design, 2014, 58: 412-425. [9]He X, Song R G, Kong D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding[J]. Optics and Laser Technology, 2019, 112: 339-348. [10]Qu C C, Li J, Juan Y F, et al. Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings[J]. Surface and Coatings Technology, 2019, 357: 811-821. [11]Torres H, Vuchkov T, Slawik S, et al. Self-lubricating laser claddings for reducing friction and wear from room temperature to 600 ℃[J]. Wear, 2018, 408/409: 22-33. [12]Torres H, Vuchkov T, Ripoll M Rodriguez, et al. Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J]. Tribology International, 2018, 126: 153-165. [13]Torres H, Slawik S, Gachot C, et al. Microstructural design of self-lubricating laser claddings for use in high temperature sliding applications[J]. Surface and Coatings Technology, 2018, 337: 24-34. [14]Liu Xiubo, Zheng Chen, Liu Yuanfu, et al. A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS2 and WS2/(Ni-P) encapsulation[J]. Journal of Materials Processing Technology, 2013, 213(1): 51-58. [15]欧阳春生, 刘秀波, 罗迎社, 等. 304不锈钢表面激光制备Ti3SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J]. 表面技术, 2020, 49(8): 161-171. Ouyang Chunsheng, Liu Xiubo, Luo Yingshe, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding[J]. Surface Technology, 2020, 49(8): 161-171. [16]Liu Xiubo, Liu Haiqing, Meng Xiangjun, et al. Effects of aging treatment on microstructure and tribological properties of nickel-based high-temperature self-lubrication wear resistant composite coatings by laser cladding[J]. Materials Chemistry and Physics, 2014, 143(2): 616-621. |