[1]Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT© Steel”[J]. JFE Technical Report, 2007, 10: 19-25. [2]张 可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52(5): 529-537. Zhang Ke, Yong Qilong, Sun Xinjun, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2016, 52(5): 529-537. [3]Di X, Li M, Yang Z, et al. Microstructural evolution, coarsening behavior of vanadium carbide and mechanical properties in the simulated heat-affected zone of modified medium manganese steel[J]. Materials and Design, 2016, 96(4): 232-240. [4]Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule[J]. Materials Science and Engineering A, 2013, 565(3): 430-438. [5]吴晓燕, 朱立光, 梅国宏, 等. 等温处理对低碳钢铁素体形核及形态的影响[J]. 金属热处理, 2017, 42(6): 89-92. Wu Xiaoyan, Zhu Liguang, Mei Guohong, et al. Effect of isothermal treatment on nucleation and morphology of ferrite in low carbon steel[J]. Heat Treatment of Metals, 2017, 42(6): 89-92. [6]田建英, 宁 榛, 周晓翠. Ti-Mo铁素体基微合金钢第二相粒子演化规律[J]. 金属热处理, 2018, 43(8): 45-49. Tian Jianying, Ning Zhen, Zhou Xiaocui. Evolution law of secondary phase particles in Ti-Mo micro-alloyed ferritic steel[J]. Heat Treatment of Metals, 2018, 43(8): 45-49. [7]卜凡征, 王玉斌, 吴庆美, 等. Ti-Mo微合金钢连续冷却过程中纳米碳化物的析出行为[J]. 金属热处理, 2019, 44(1): 205-208. Bu Fanzheng, Wang Yubing, Wu Qinqmei, et al. Precipitation of nanoscale carbides in Ti-Mo microalloyed steel during continuous cooling process[J]. Heat Treatment of Metals, 2019, 44(1): 205-208. [8]张 宇, 时晓光, 徐荣杰, 等. 卷取后温度场对低碳微合金钢组织和性能的影响[J]. 金属热处理, 2019, 44(10): 51-55. Zhang Yu, Shi Xiaoguang, Xu Rongjie, et al. Effect of post-coiling temperature field on microstructure and properties of low-carbon microalloyed steel[J]. Heat Treatment of Metals, 2019, 44(10): 51-55. [9]Kim Y W, Kim J H, Hong S G, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel[J]. Materials Science and Engineering A, 2014, 605(3): 244-252. [10]Kim Y W, Hong S G, Huh Y H, et al. Role of rolling temperature in the precipitation hardening characteristics of Ti-Mo microalloyed hot-rolled high strength steel[J]. Materials Science and Engineering A, 2014, 615(5): 255-261. [11]Hodgson P D, Timokhina I B, Beladi H, et al. Nanostructural engineering of TMCP steels[J]. Advanced Steels, 2011, 14(4): 309-316. [12]Subrata M, Ilana T, Chen Z, et al. Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. Journal of Alloys and Compounds, 2017, 5(1): 621-632. [13]Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel[J]. Acta Materialia, 2011, 59(16): 6264-6274. [14]Peng Z W, Li L J, Chen S J, et al. Isothermal precipitation kinetics of carbides in undercooled austenite and ferrite of a titanium microalloyed steel[J]. Materials and Design, 2016, 108(10): 289-297. [15]雍歧龙, 马鸣图, 吴宝榕. 微合金钢物理和力学冶金[M]. 北京: 机械工业出版社, 1989. [16]张 可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 38-46. Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(8): 38-46. [17]Misra R D K, Tenneti K K, Weatherly G C, et al. Microstructure and texture of hot-rolled Cb-Ti and V-Cb microalloyed steels with differences in formability and toughness[J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2341-2351. [18]Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering A, 2005, 394(1/2): 339-352. [19]Misra R D K, Thompson S W, Hylton T A, et al. Microstructures of hot-rolled high-strength steels with significant differences in edge formability[J]. Metallurgical and Materials Transactions A, 2001, 32(3): 745-760. [20]Chun E J, Do H, Kim S, et al. Effrect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels[J]. Materials Chemistry and Physics, 2013, 140(1): 307-315. [21]何 康, 宁玉亮, 李烈军, 等. 等温工艺对钛微合金钢组织和析出行为的影响[J]. 材料热处理学报, 2019, 40(6): 136-142. He Kang, Ning Yuliang, Li Liejun, et al. Effect of isothermal process on microstructure and precipitation behavior of titanium microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 136-142. [22]Huo X D, Li L J, Peng Z W, et al. Effect of TMCP schedule on precipitation microstructure and properties of Ti-microalloyed high strength steel[J]. Journal of Iron and Steel Research, International, 2016, 23(6): 593-601. [23]Zhang K, Wang H, Sun X J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 997-1005. [24]Mandal D, Ghosh M, Pal J, et al. Evolution of microstructure and mechanical properties under different austempering holding time of cast Fe-1.5Si-1.5Mn-V steels[J]. Materials and Design, 2014, 54(2): 831-837. [25]李晓林, 肖宝亮, 崔 阳, 等. Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J]. 材料导报, 2017, 31(1): 105-111. Li Xiaolin, Xiao Baoliang, Cui Yang, et al. Solid solution and Re-precipitation of carbonitride in Nb, Ti-microalloyed steel[J]. Materials Review, 2017, 31(1): 105-111. [26]徐 洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究[D]. 沈阳: 东北大学, 2015. [27]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006, 55. [28]康俊雨, 孙新军, 李昭东, 等. Ti-V复合低碳钢在回火过程中MC型碳化物的析出与强化行为[J]. 钢铁研究学报, 2015(8): 50-54. Kang Junyu, Sun Xinjun, Li Zhaodong, et al. Precipitation and strengthening behaviors of MC type carbides in Ti-V low carbon steel during tempering process[J]. Journal of Iron and Steel Research, 2015(8): 50-54. |