[1] 李承亮, 张明乾. 压水堆核电站反应堆压力容器材料概述[J]. 材料导报, 2008, 22(9): 65-68. Li Chenliang, Zhang Mingqian. Overview of reactor pressure vessel steel in PWR nuclear power plants[J]. Materials Review, 2008, 22(9): 65-68. [2] 阮於珍. 核电厂材料[M]. 北京: 原子能出版社, 2010. [3] 顾 军. AP1000设备技术及分析[M]. 北京: 中国原子能出版传媒有限公司, 2011. [4] 王 伟. 核电材料SA508-3钢非均匀热变形实验与数值模拟研究[D]. 上海: 上海交通大学, 2013. Wang Wei. Research of nuclear power material SA508-3 steel in homogeneous hot deformation experiment and numerical simulation[D]. Shanghai: Shanghai Jiao Tong University, 2013. [5] 白 天. AP1000压力容器法兰接管锻件的组织和性能评价[D]. 昆明: 昆明理工大学, 2013. [6] 马玉霞, 党淑娥, 秦尚武, 等. SA508-3钢粗大非平衡组织重新加热奥氏体晶核形成与长大行为[J]. 金属热处理, 2018, 43(10): 41-45. Ma Yuxia, Dang Shu'e, Qin Shangwu, et al. Formation and growth behavior of austenite nuclei in coarse and non-equilibrium structure of SA508-3 steel during reheating[J]. Heat Treatment of Metals, 2018, 43(10): 41-45. [7] 陈宏宇, 刘正东, 林肇杰, 等. SA508-3钢平衡相转变的热力学计算和分析[J]. 特殊钢, 2007, 28(2): 19-21. Chen Hongyu, Liu Zhengdong, Liu Zhaojie, et al. Thermodynamic calculation and analysis on equilibrium phases transformation in SA508-3 steel[J]. Special Steel, 2007, 28(2): 19-21. [8] 胡本芙, 杨兴博, 林岳萌. 核电站压力容器用SA508-3钢厚截面锻件热处理冷却速度[J]. 钢铁, 1998, 33(5): 49-52. Hu Benfu, Yang Xingbo, Lin Yuemeng. Quenching cooling rate of heavy section SA508-3 steel forging for pressure vessel for nuclear power station[J]. Iron ang Steel, 1998, 33(5): 49-52. [9] 杨兴博, 孙永立, 程 义, 等. 国产SA508-3锻件厚度-平均冷却速度-显微组织-力学性能关系的研究[J]. 锅炉制造, 1995(4): 29-35. Yang Xingbo, Sun Yongli, Cheng Yi, et al. Research of the relation among the thickness-average cooling rate-microstructure-mechanical properties of forging SA508-3 in China[J]. Boiler Manufacturing, 1995(4): 29-35. [10] 韩利战, 顾剑锋, 龙智南, 等. 不同冷却条件下核电大锻件用钢显微组织分析[C]//中国核学会2011年学术年会论文集, 2011: 534-541. [11] Kim S, Im Y R, Lee S, et al. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels[J]. Metallurgical and Materials Transactions A, 2004, 35(7): 2027-2037. [12] Tanaka Y, Sato I. Development of high purity large forgings for nuclear power plants[J]. Journal of Nuclear Materials, 2011, 417(1/3): 854-859. [13] Lee S G, Kim I S. Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288 ℃[J]. Materials Science and Engineering A, 2006, 420(1/2): 279-283. [14] Lee S, Kim S, Hwang B, et al. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA508 steel[J]. Acta Materialia, 2002, 50(19): 4755-4762. [15] Lee Ki-Hyoung, Kim Min-Chul, Yang Won-Jon, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels[J]. Materials Science and Engineering A, 2013, 565: 158-164. [16] 王天睿. 厚大断面核电压力容器SA 508-3钢锻件低温冲击韧性研究[D]. 沈阳: 沈阳理工大学, 2017. Wang Tianrui. Study on low temperature impact toughness of SA 508-3 steel for heavy section forging in reactor pressure vessel[D]. Shenyang: Shenyang Ligong University, 2017. |