[1]Seshadri Seetharaman. Fundamentals of Aluminium Metallurgy[M]. Boca Raton: CRC Press, 2018: 387-438. [2]Kim W J, Jeong H T. Construction of processing maps combined with deformation mechanism maps using creep deformation equations[J]. Journal of Materials Research and Technology, 2020, 9(6): 13434-13449. [3]孙国宁, 徐萌波, 马文宇, 等. 新型建筑用铝锰合金的热变形行为[J]. 金属热处理, 2019, 44(5): 138-143. Sun Guoning, Xu Mengbo, Ma Wenyu, et al. Hot deformation behavior of new type Al-Mn alloy for building[J]. Heat Treatment of Metals, 2019, 44(5): 138-143. [4]戚运莲, 曾立英, 张思远, 等. β-CEZ钛合金热变形行为及热加工工艺[J]. 金属热处理, 2018, 43(3): 45-49. Qi Yunlian, Zeng Liying, Zhang Siyuan, et al. Hot deformation behavior and thermo-mechanical processing of β-CEZ titanium alloy[J]. Heat Treatment of Metals, 2018, 43(3): 45-49. [5]Lin Y C, Yang Hui, He Daoguang, et al. A physically-based model considering dislocation-solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures[J]. Materials and Design, 2019, 183: 108122. [6]Zhang Jianbo, Wu Chongji, Peng Yuanyi, et al. Hot compression deformation behavior and processing maps of ATI 718Plus superalloy[J]. Journal of Alloys and Compounds, 2020, 835: 155195. [7]Prasad Y V R K, Sasidhara S, Sikka V K. Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy[J]. Intermetallics, 2000, 8(9-11): 987-995. [8]Tsivoulas D, Prangnell P B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet[J]. Acta Materialia, 2014, 77(4): 1-16. [9]Eva G, Frédéric D G, Christophe S, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy[J]. Acta Materialia, 2017, 133: 172-185. [10]Zhu Ruihua, Liu Qing, Li Jinfeng, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. Journal of Alloys and Compounds, 2015, 650: 75-85. [11]毛 敏, 栾佰峰, 李飞涛, 等. β-T51Z合金的热变形行为与组织演变研究[J]. 稀有金属材料与工程, 2020, 49(4): 1211-1219. Mao Min, Luan Baifeng, Li Feitao, et al. Hot deformation behavior and microstructure evolution of β-T51Z alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1211-1219. [12]Son K T, Kim M H, Kim S W, et al. Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating[J]. Journal of Alloys and Compounds, 2018, 740: 96-108. [13]韩冬峰, 郑子樵, 蒋 呐, 等. 高强可焊2195铝-锂合金热压缩变形的流变应力[J]. 中国有色金属学报, 2005, 14(12): 2090-2095. Han Dongfeng, Zheng Ziqiao, Jiang Na, et al. Flow stress of high-strength weldable 2195 aluminium-lithium alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals, 2005, 14(12): 2090-2095. [14]王文浩, 李 波, 苏华山, 等. 基于热加工图的均匀化态Al-Zn-Mg-Cu合金的热变形行为[J]. 金属热处理, 2019, 44(12): 170-175. Wang Wenhao, Li Bo, Su Huashan, et al. Hot deformation behavior of homogenized Al-Zn-Mg-Cu alloy based on processing map[J]. Heat Treatment of Metals, 2019, 44(12): 170-175. [15]黄有林, 王建波, 凌学士, 等. 热加工图理论的研究进展[J]. 材料导报, 2008, 22(S3): 173-176. Huang Youlin, Wang Jianbo, Ling Xueshi, et al. Research development of hot processing map theory[J]. Materials Review, 2008, 22(S3): 173-176. [16]Li Chunhong, Qiu Risheng, Luan Baifeng, et al. Hot deformation and processing maps of as-sintered CNT/Al-Cu composites fabricated by flake powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9): 1695-1704. [17]权国政, 王熠昕, 陈 涛, 等. 基于热加工图的7075铝合金热塑性变形工艺参数优化识别[J]. 功能材料, 2011, 42(9): 1673-1677, 1681. Quan Guozheng, Wang Yixin, Chen Tao, et al. Optimal identification of parameters at hot plastic deformation for 7075 aluminum alloy based on processing map[J]. Journal of Functional Materials, 2011, 42(9): 1673-1677, 1681. |