[1]姜国华, 王 楠, 赵 波. 集成电路互连引线的研究进展[J]. 微纳电子技术, 2015(8): 477-484. Jiang Guohua, Wang Nan, Zhao Bo. Research progress of the IC interconnection wire[J]. Micronanoelectronic Technology, 2015(8): 477-484. [2]徐小城. 深亚微米集成电路工艺中铜金属互联技术[J]. 微电子技术, 2001(6): 1-7. Xu Xiaocheng. On the interconnecting technology of metal copper used in IC with deep sub-micron processing[J]. Microelectronic Technology, 2001(6): 1-7. [3]傅晓娟, 赵毅强, 刘 峻, 等. 铜互连扩散阻挡层工艺优化[J]. 北京航空航天大学学报, 2020, 46(8): 1514-1520. Fu Xiaojuan, Zhao Yiqiang, Liu Jun, et al. Optimization of diffusion barrier process on copper interconnection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1514-1520. [4]Ogawa E T, Lee K D, Blaschke V A, et al. Electromigration reliability issues in dual-damascene Cu interconnections[J]. IEEE Transactions on Reliability, 2002, 54(4): 403-419. [5]Wang Y, Zhao C H, Cao F, et al. Barrier capability of Zr-N films with different density and crystalline structure in Cu/Si contact systems[J]. Materials Letters, 2008, 62(21-22): 3761-3763. [6]Wang Y, Chen X, Ma W, et al. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization[J]. Applied Surface Science, 2017, 396: 333-338. [7]Wu Z, Li R, Xie X, et al. PVD-treated ALD TaN for Cu interconnect extension to 5nm node and beyond[C]//2018 IEEE International Interconnect Technology Conference (IITC). 2018: 149-151. [8]Wu K C, Tseng J Y, Chen W J. Electroplated Ru and RuCo films as a copper diffusion barrier[J]. Applied Surface Science, 2020, 516: 146139. [9]陈海波, 周继承, 李幼真. 集成电路Cu互连扩散阻挡层的研究进展[J]. 材料导报, 2006, 20(12): 8-11. Chen Haibo, Zhou Jicheng, Li Youzhen. Development of diffusion barrier for Cu interconnection in ULSI[J]. Materials Reports, 2006, 20(12): 8-11. [10]Shacham-Diamand Y. Barrier layers for Cu ULSI metallization[J]. Journal of Electronic Materials, 2001, 30(4): 336-344. [11]Uekubo M, Oku T, Nii K, et al. WNx diffusion barriers between Si and Cu[J]. Thin Solid Films, 1996, 286(s1/2): 170-175. [12]Qu X P, Tan J J, Zhou M, et al. Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization[J]. Applied Physics Letters, 2006, 88: 151912. [13]Lee H J, Hong T E, Kim S H. Atomic layer deposited self-forming Ru-Mn diffusion barrier for seedless Cu interconnects[J]. Journal of Alloys and Compounds, 2016, 686(25): 1025-1031. [14]Meng Y, Song Z X, Qian D, et al. Thermal stability of RuZr alloy thin films as the diffusion barrier in Cu metallization[J]. Journal of Alloys and Compounds, 2014, 588: 461-464. [15]Koike J, Wada M. Self-forming diffusion barrier layer in Cu-Mn alloy metallization[J]. Applied Physics Letters, 2005, 87: 041911. [16]Dey S, Yu K H, Consiglio S, et al. Atomic layer deposited ultrathin metal nitride barrier layers for ruthenium interconnect applications[J]. Journal of Vacuum Science and Technology A, 2017, 35: 03E109. [17]Xu H, Hu Z J, Qu X P, et al. Effect of thickness scaling on the permeability and thermal stability of Ta(N) diffusion barrier[J]. Applied Surface Science, 2019, 498: 143887. [18]Meng Y, Song Z X, Chen J H, et al. Ultrathin ZrBxOy films as diffusion barriers in Cu interconnects[J]. Vacuum, 2015, 119: 1-6. [19]Muhlbacher M, Greczynski G, Sartory B, et al. Enhanced Ti0.84Ta0.16N diffusion barriers, grown by a hybrid sputtering technique with no substrate heating, between Si(001) wafers and Cu overlayers[J]. Scientific Reports, 2018, 8: 5360. [20]Meng Y, Song Z X, Li Y H, et al. Thermal stability of ultra thin Zr-B-N films as diffusion barrier between Cu and Si[J]. Applied Surface Science, 2020, 527: 146810. [21]Lee J, Duh J G. Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature[J]. Vacuum, 2017, 142: 81-86. [22]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6: 299-303. [23]Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: A review[J]. Materials Research Letters, 2018, 6: 199-229. [24]贾岳飞, 王 刚, 贾延东, 等. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017. Jia Yuefei, Wang Gang, Jia Yandong, et al. Light-weight high-entropy alloy: A review[J]. Materials Reports, 2020, 34(17): 17003-17017. [25]李荣斌, 黄 天, 蒋春霞, 等. TaWTiVCr高熵合金薄膜的制备及微观结构、力学性能研究[J]. 表面技术, 2020, 49(6): 159-167. Li Rongbin, Huang Tian, Jiang Chunxia, et al. Study on preparation, microstructure and mechanical properties of TaWTiVCr high entropy alloy thin film[J]. Surface Technology, 2020, 49(6): 159-167. [26]Xu Y, Li G, Xia Y. Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J]. Applied Surface Science, 2020, 523: 14629. [27]Dong Y S, Zhao W J, Li Y R, et al. Influence of silicon on the microstructure and mechanical properties of Zr-Si-N composite films[J]. Applied Surface Science, 2005, 252(14): 5057-5062. [28]Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multicomponent (AlCrRuTaTiZr)Nx, as robust diffusion barrier for Cu interconnects[J]. Journal of Alloys and Compounds, 2012, 515: 4-7. [29]Chang S Y, Chen D S. Ultrathin (AlCrTaTiZr)Nx/AlCrTaTiZr bilayer structures with high diffusion resistance for Cu interconnects[J]. Journal of the Electrochemical Society, 2010, 157 (6): G154-G159. [30]Qu X P, Lu H, Tao P, et al. Effects of pre-annealing on the diffusion barrier properties for ultrathin W-Si-N thin film[J]. Thin Solid Film, 2004, 462: 67-71. [31]Fu T, Shen Y G, Zhou Z F, et al. Surface morphology of sputter deposited W-Si-N composite coatings characterized by atomic force microscopy[J]. Materials Science and Engineering B, 2005, 123(2): 158-162. |