[1]Fang Guan, Zhai Xiaofan, Duan Jizhou, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization[J]. Plos One, 2016, 11(9): 1-22. [2]Tao Sufen, Xia Yunjin, Wang Fuming, et al. Effect of heat treatment technique on the low temperature impact toughness of steel EQ70 for offshore structure[J]. High Temperature Materials and Processes, 2017, 36(8): 825-830 [3]鲍亮亮, 王 勇, 韩 涛, 等. 海洋平台焊接技术及发展趋势[J]. 焊接, 2019(1): 21-30, 66. Bao Liangliang, Wang Yong, Han Tao, et al. Welding technology and development trend of offshore platform[J]. Welding and Joining, 2019(1): 21-30, 66. [4]杨 浩, 李玉藏, 曲锦波. EQ70海洋平台用钢回火后的组织与性能[J]. 金属热处理, 2015, 40(2): 131-134. Yang Hao, Li Yucang, Qu Jinbo. Microstructure and properties of EQ70 offshore structural steel after tempering[J]. Heat Treatment of Metals, 2015, 40(2): 131-134. [5]覃展鹏, 王红鸿, 童 志, 等. 亚温淬火工艺对低碳低合金高强钢组织及性能的影响[J]. 材料热处理学报, 2017, 38(9): 142-147. Qin Zhanpeng, Wang Honghong, Tong Zhi, et al. Influence of lamellarizing process on microstructure and properties of low carbon low alloy high-strength steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 142-147. [6]王 通, 张 朋, 王九清, 等. 原始组织对690 MPa级海工钢亚温淬火后强韧性的影响[J]. 钢铁, 2020, 55(12): 72-80. Wang Tong, Zhang Peng, Wang Jiuqing, et al. Effect of original structure on strength and toughness of 690 MPa grade marine engineering steel after intercritical quenching[J]. Iron and Steel, 2020, 55(12): 72-80. [7]Hao X, Zhao X, Huang B, et al. Influence of intercritical quenching temperature on microstructure, mechanical properties and corrosion resistance of dual-phase steel[J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4446-4456. [8]侯家平, 潘 涛, 朱莹光, 等. 临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J]. 材料热处理学报, 2014, 35(10): 88-93. Hou Jiaping, Pan Tao, Zhu Yingguang, et al. Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 88-93. [9]陶素芬. 700 MPa级海洋平台用钢成分、组织与性能的研究[D]. 北京: 北京科技大学, 2015. Tao Sufen. Study on composition, microstructure and property of 700 MPa grade steel for offshore structure[D]. Beijing: University of Science and Technology Beijing, 2015. [10]狄国标, 周砚磊, 麻庆申, 等. 镍含量对海洋平台用钢组织性能的影响[J]. 钢铁研究学报, 2012, 24(6): 52-56. Di Guangbiao, Zhou Yanlei, Ma Qingshen, et al. Effect of Ni content on microstructures and mechanical properties of offshore platform steel[J]. Jouournal of Iron and Steel Research, 2012, 24(6): 52-56. [11]孙宪进. 高性能海洋工程用钢的研究与开发[D]. 北京: 北京科技大学, 2018. Sun Xianjin. The research and development of high performance offshore structure steels[D]. Beijing: University of Science and Technology Beijing, 2018. [12]勾 雪, 王福明, 孙乐飞, 等. EQ70海洋平台用钢动态连续冷却转变[J]. 金属热处理, 2014, 39(5): 6-9. Gou Xue, Wang Fuming, Sun Lefei, et al. Dynamic continuous cooling transformation of EQ70 steel for offshore platform[J]. Heat Treatment of Metals, 2014, 39(5): 6-9. [13]陶素芬, 王福明, 于乔木, 等. 海洋平台用EQ70钢的连续冷却转变[J]. 材料热处理学报, 2013, 34(7): 84-88. Tao Sufen, Wang Fuming, Yu Qiaomu, et al. Continuous cooling transformation of EQ70 steel for offshore platform[J]. Transactions of Materials and Heat Treatment, 2013, 34(7): 84-88. [14]赵晋斌, 邱保文, 田 勇, 等. Ni对高强船板钢显微组织及低温韧性的影响[J]. 轧钢, 2020, 37(4): 12-16. Zhao Jinbin, Qiu Baowen, Tian Yong, et al. Effect of Ni on microstructure and low-temperature toughness of high strength ship plate steel[J]. Steel Rolling, 2020, 37(4): 12-16 [15]黄煜博, 张 琪, 文艺贝, 等. Ni元素对高碳纳米结构贝氏体钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30(9): 735-740. Huang Yubo, Zhang Qi, Wen Yibei, et al. Effect of Ni on microstructure and properties of high carbon nano-structured bainite steels[J]. Jouournal of Iron and Steel Research, 2018, 30(9): 735-740. [16]钟 磊, 吴开明, 董航宇, 等. Ni元素对微纳结构低温贝氏体钢组织与力学性能的影响[J]. 武汉科技大学学报(自然科学版), 2018, 41(5): 328-333. Zhong Lei, Wu Kaiming, Dong Hangyu, et al. Effect of Ni on microstructure and mechanical properties of low temperature micro/nano-stuctured bainitic steel[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5): 328-333. |