[1]Schindler Ivo, Kawulok Rostislav, Petr Opěla, et al. Effects of austenitization temperature and pre-deformation on CCT diagrams of 23MnNiCrMo5-3 steel[J]. Materials, 2020, 13(22): 5116-5135. [2]姚纪坛, 孙 力, 安会龙, 等. 低屈强比高强耐候钢的CCT曲线及性能[J]. 金属热处理, 2020, 45(6): 104-108. Yao Jitan, Sun Li, An Huilong, et al. CCT curves and properties of low yield ratio high strength weathering steel[J]. Heat Treatment of Metals, 2020, 45(6): 104-108. [3]曹京华, 潘红波, 章 静, 等. Nb-Ti微碳深冲双相钢的连续冷却转变规律[J]. 钢铁研究学报, 2020, 32(4): 329-334. Cao Jinghua, Pan Hongbo, Zhang Jing, et al. Continuous cooling transformation of Nb-Ti micro-carbon deep drawing dual-phase steel[J]. Journal of Iron and Steel Research, 2020, 32(4): 329-334. [4]方光锦. 系泊链用R4(22MnCrNiMo)钢CCT曲线测定及分析[J]. 金属热处理, 2020, 45(3): 208-211. Fang Guangjin. Determination and analysis of CCT curves of R4(22MnCrNiMo) steel for mooring chain[J]. Heat Treatment of Metals, 2020, 45(3): 208-211. [5]王云龙, 陈银莉, 余 伟. 不同形变条件下非调质钢45MnSiVSQ的连续冷却转变[J]. 金属热处理, 2020, 45(12): 13-18. Wang Yunlong, ChenYinli, Yu Wei. Continuous cooling transformation of non-quenched and tempered 45MnSiVSQ steel under different deformation conditions[J]. Heat Treatment of Metals, 2020, 45(12): 13-18. [6]Rowolt C, Milkereit B, Springer A, et al. Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)[J]. Journal of Materials Science, 2020, 55(27): 13244-13257. [7]Liu W, Yin Z L, Ding Z Y. Low-temperature phase transitions of sodium aluminate solutions[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 194-199. [8]Phuraya N, Phung-On I, Terasaki H, et al. Direct observation of liquation in Ni-base superalloy by using confocal laser scanning microscopy[J]. Key Engineering Materials, 2015, 658(24): 36-41. [9]Loder D, Michelic S K. Systematic investigation of acicular ferrite formation on laboratory scale[J]. Materials Science and Technology, 2017, 33(2): 162-171. [10]Wang Q, Ye Q, Wang W, et al. In situ observation of austenite grain growth and phase transformation of A517GrQ rack steel for jack-up offshore platform[J]. IOP Conference Series: Materials Science and Engineering, 2019, 562: 012126. [11]Huang W H, Lei L P, Fang G. Microstructure evolution of hot work tool steel 5CrNiMoV throughout heating, deformation and quenching[J]. Materials Characterization, 2020, 163: 110307. [12]Clark S, Janik V, Rijkenberg A, et al. Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the γ/α transformation[J]. Materials Characterization, 2016, 115: 83-89. [13]Sharma M, Mu W Z, Dogan N. In situ observation of dissolution of oxide inclusions in steelmaking slags[J]. JOM, 2018, 70(7): 1220-1224. [14]张同生, 王德永, 张永启, 等. 铝、镁脱氧钢中夹杂物的动态演变规律[J]. 东北大学学报(自然科学版), 2014, 35(9): 1270-1274. Zhang Tongsheng, Wang Dengyong, Zhang Yongqi, et al. Dynamic evolution of inclusions in Al-Mg deoxidation melts[J]. Journal of Northeastern University(Natural Science), 2014, 35(9): 1270-1274. [15]Ren Q Q, Liu T, Baik S I, et al. The effects of alloying elements on the peritectic range of Fe-C-Mn-Si steels[J]. Journal of Materials Science, 2021, 56(10): 1-17. [16]胡海江, 徐 光, 张玉龙, 等. 先进贝氏体钢奥氏体晶粒长大行为的动态观察[J]. 材料热处理学报, 2014, 35(1): 83-87. Hu Haijiang, Xu Guang, Zhang Yulong, et al. Dynamic observation of austenite grain growth behavior of an advanced bainite steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(1): 83-87. [17]徐 洲, 赵连城. 金属固态相变原理[M]. 北京: 科学出版社, 2004. [18]赵 卓, 车 安, 全书仪, 等. 基于激光共聚焦显微镜分析LX72和LX82帘线钢的组织和性能[J]. 金属热处理, 2019, 44(9): 52-57. Zhao Zhuo, Che An, Quan Shuyi, et al. Microstructure and properties of LX72 and LX82 cord steels analyzed by confocal laser scanning microscope[J]. Heat Treatment of Metals, 2019, 44(9): 52-57. [19]陈 刚. Ni含量对Cu沉淀强化钢组织与性能的影响[D]. 昆明: 昆明理工大学, 2015. [20]Andrews K W. Empirical formulae for the calculation of some transformation temperatures[J]. JISI, 1965, 203(6): 721-727. [21]刘 鹏, 何 亮, 张玉祥, 等. 钢的马氏体转变开始温度预测研究进展[J]. 材料开发与应用, 2015, 30(4): 88-92. Liu Peng, He Liang, Zhang Yuxiang. et al. Advances in prediction of martensite start temperature for steel[J]. Development and Application of Materials, 2015, 30(4): 88-92. [22]乔 梁. 经验模型和JMatPro软件计算马氏体开始转变温度的研究[J]. 热加工工艺, 2017, 46(8): 94-96, 103. Qiao Liang. Study on martensitic starting transformation temperature calculated by empirical models and JMatPro software[J]. Hot Working Technology, 2017, 46(8): 94-96, 103. [23]Cheng J, Qing J S, Guo Y H, et al. Real-time observation of bainite formation at heterogeneous phases in a high-strength weathering steel[J]. Journal of Iron and Steel Research International, 2019, 26(3): 301-309. |