[1]赵 飞, 万奎贝, 乔建生, 等. 低活化马氏体钢的微观结构与力学性能[J]. 核科学与工程, 2007, 27(1): 59-63. Zhao Fei, Wan Kuibei, Qiao Jiansheng, et al. The microstructure and mechanical properties of China low activation martensitic steel[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27(1): 59-63. [2]Xue Wenyin, Zhou Jinhua, Shen Yongfeng, et al. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel[J]. Journal of Materials Science and Technology, 2019, 35(9): 1869-1876. [3]胡 立. Fe-Al层表面α-Al2O3膜制备及氧化行为研究[D]. 绵阳: 中国工程物理研究院, 2019. Hu Li. Preparation and oxidation behavior of α-Al2O3 film on the surface of Fe-Al layer[D]. Mianyang: China Academy of Engineering Physics, 2019. [4]张 磊, 吴 勇, 顿易章, 等. 采用CVD法制备空心叶片内腔铝化物涂层[J]. 金属热处理, 2019, 44(5): 124-128. Zhang Lei, Wu Yong, Dun Yizhang, et al. Preparation of aluminide coating on hollow-blade inner-cavity by CVD method[J]. Heat Treatment of Metals, 2019, 44(5): 124-128. [5]邱善广. 低压冷喷涂铝涂层的防腐性能研究[D]. 青岛: 中国海洋大学, 2013. Qiu Shanguang. Research of anti-corrosion of Al coatings by low pressure cold spray technology[D]. Qingdao: Ocean University of China, 2013. [6]Wang Wen, Wang Dan, Han Fusheng. Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment[J]. Materials Letters, 248: 60-64. [7]Mohammadi K, Haghi A K. A study on characterization of pack-cemented aluminide coating on metals[J]. Journal of Materials Processing Technology, 2008, 201(1/3): 669-672. [8]Sun Yanhui, Dong Jian, Zhao Pengze, et al. Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process[J]. Surface and Coatings Technology, 2017, 330: 234-240. [9]姚天宇, 杨海燕, 周素洪, 等. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478. Yao Tianyu, Yang Haiyan, Zhou Suhong, et al. Research progress on the aluminum electro-deposition on magnesium alloy[J]. Materials Reports, 2019, 33(3): 470-478. [10]李华杰, 武会宾, 唐 荻. 中国低活化马氏体钢组织性能及强化机理[J]. 北京科技大学学报, 2011, 33(2): 166-171. Li Huajie, Wu Huibin, Tang Di. Microstructure properties and strengthening mechanism of China low activation martensitic steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(2): 166-171. [11]江琛琛, 高秋志, 甄云乾, 等. 热处理工艺对AFA耐热钢组织和力学性能的影响[J]. 材料科学与工艺, 2021, 29(2): 27-35. Jiang Chenchen, Gao Qiuzhi, Zhen Yunqian, et al. Effect of heat treatment process on microstructure and mechanical properties of AFA heat-resistant steel[J]. Materials Science and Technology, 2021, 29(2): 27-35. [12]Liang Mengtian, Liu Shaojun, Song Liangliang, et al. Effect of simulated stress-relieving heat treatment on microstructure and tensile properties of CLAM steel[J]. Fusion Engineering and Design, 2019, 148: 111287. [13]赵 林, 杨军虎, 魏文澜, 等. P110H钢的高温拉伸性能及断裂机理[J]. 金属热处理, 2020, 45(4): 204-208. Zhao Lin, Yang Junhu, Wei Wenlan, et al. High temperature tensile properties and fracture mechanism of P110H steel[J]. Heat Treatment of Metals, 2020, 45(4): 204-208. [14]黄群英, 李春京, 李艳芬, 等. 中国低活化马氏体钢CLAM研究进展[J]. 核科学与工程, 2007, 27: 41-50, 85. Huang Qunying, Li Chunjing, Li Yanfen, et al. R&D status of China low activation martensitic steel[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27: 41-50, 85. [15]胡家齐, 梁剑雄, 曹呈祥, 等. 铸造15-5PH钢的拉伸性能及断口形貌[J]. 金属热处理, 2019, 44(9): 36-41. Hu Jiaqi, Liang Jianxiong, Cao Chengxiang, et al. Tensile properties and fracture morphologies of as-cast 15- 5PH steel[J]. Heat Treatment of Metals, 2019, 44(9): 36-41. [16]周 巍, 姜 锋, 赖松柏, 等. 不同应变速率下5B70铝合金的拉伸断口分析[J]. 金属热处理, 2020, 45(3): 231-234. Zhou Wei, Jing Feng, Lai Songbai, et al. Tensile fracture analysis of 5B70 aluminum alloy under different strain rates[J]. Heat Treatment of Metals, 2020, 45(3): 231-234. [17]钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005, 27(3): 358-370. Zhong Qunpeng, Zhao Zihua, Zhang Zheng. Development of “fractography”and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005, 27(3): 358-370. |