[1]谌 康, 徐 乐, 时 捷, 等. 新型超高强度低氢脆敏感性扭杆弹簧用钢[J]. 钢铁, 2017, 52(5): 94-99. Shen Kang, Xu Le, Shi Jie, et al. A new torsion bar spring steel with ultra-high strength and low hydrogen embrittlement sensitivity[J]. Iron and Steel, 2017, 52(5): 94-99. [2]李云昆, 尉文超, 何肖飞, 等. 不同冶炼方法对扭杆弹簧钢超高周疲劳性能的影响[J]. 钢铁研究学报, 2020, 32(11): 1006-1013. Li Yunkun, Yu Wenchao, He Xiaofei, et al. Effect of different smelting methods on very high cycle fatigue properties of a torsion bar spring steel[J]. Journal of Iron and Research, 2020, 32(11): 1006-1013. [3]朱士鹏. 扭杆弹簧用高强度钢的超高周疲劳性能研究[D]. 秦皇岛: 燕山大学, 2019. Zhu Shipeng. Study on very high cycle fatigue properties of high strength steels for torsion bar spring[D]. Qinhuangdao: Yanshan University, 2019. [4]谌 康, 王毛球, 徐 乐, 等. 新型扭杆弹簧用高强度马氏体钢疲劳性能研究[J]. 钢铁研究学报, 2021, 33(5): 426-436. Shen Kang, Wang Maoqiu, Xu Le, et al. Fatigue behavior of a new high strength martensitic steel for torsion bar spring[J]. Journal of Iron and Research, 2021, 33(5): 426-436. [5]Wang Y J, Sun J J, Tao J, et al. A low-alloy high-carbon martensite steel with 2.6GPa tensile strength and good ductility[J]. Acta Materialia, 2018, 158: 247-256. [6]Tang S, Liu Z Y, Wang G D. Development of high strength plates with low yield ratio by the combination of TMCP and inter-critical quenching and tempering[J]. Steel Research International, 2011, 82(7): 772-778. [7]张鹏杰, 王春旭, 厉 勇, 等. 淬火温度对2200 MPa级超高强度钢力学性能与微观组织的影响[J]. 金属热处理, 2021, 46(1): 70-74. Zhang Pengjie, Wang Chunxu, Li Yong, et al. Effect of quenching temperature on mechanical properties and microstructure of 2200 MPa ultra-high strength steel[J]. Heat Treatment of Metals, 2021, 46(1): 70-74. [8]Hutchinson B, Hagstrom J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C)[J]. Acta Materialia, 2011, 59: 5845-5858. [9]Chernyshov E A, Romanov A D, Romanova E A. Improvement of high-strength steel casting quality by optimizing the quenching temperature[J]. Materialstoday: Proceedings, 2021, 38: 1477-1479. [10]孙志溪, 卢 锐, 高 野, 等. 淬火温度对Q890D高强钢组织与力学性能的影响[J]. 河北冶金, 2021(3): 28-33. Sun Zhixi, Lu Rui, Gao Ye, et al. Effect of quenching temperature on microstructure and mechanical properties of Q890D high strength steel[J]. Hebei Metallurgy, 2021(3): 28-33. [11]Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials and Design, 2013, 50: 102-107. [12]朱成林, 高彩茹, 朱长友, 等. V微合金析出强化型高强钢中Mo的作用[J]. 钢铁钒钛, 2019, 40(1): 62-68. Zhu Chenglin, Gao Cairu, Zhu Changyou, et al. Effect of Mo in V-microalloyed precipitating-strengthen high strength steel[J]. Iron Steel Vanadium Titanium, 2019, 40(1): 62-68. [13]Chen W J, Gao P F, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Materials Science and Engineering A, 2020, 797: 140115. [14]Chen W J, Wang S, Zhao Z Z, et al. Effect of quenching temperature on the microstructure and mechanical properties of 30MnBNbV hot stamping steel[J]. Materials Research Express, 2019, 6(10): 1065e3. [15]Clarke A J, Klemm-Toole J, Clarke K D, et al. Perspectives on quenching and tempering 4340 steel[J]. Metallurgical and Materials Transactions A, 2020, 51: 4984-5005. [16]王春芳. 低合金马氏体钢强韧性组织控制单元的研究[D]. 北京: 钢铁研究总院, 2008. Wang Chunfang. Study of low alloy martensitic steel strong toughness organization control unit[D]. Beijing: Central Iron and Steel Research Institute, 2008. [17]Lagneborg R, Siwecki T, Zajac S, et al. Role of vanadium in microalloyed steels[J]. Scandinavian Journal of Metallurgy, 1999, 28(5): 186-241. [18]Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A, 2006, 438(1): 237-240. [19]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Research, 2020, 32(12): 1059-1076. |