[1]Fowler G J. The influence of non-metal inclusions on the threshold behavior in fatigue[J]. Materials Science and Engineering, 1979, 39(1): 121-126. [2]张 强. 32Cr3MoVE渗氮轴承钢微观组织与疲劳性能研究[D]. 石家庄: 河北科技大学, 2019. Zhang Qiang. Study on microstructure and fatigue properties of 32Cr3MoVE nitrided bearing steel[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. [3]Zhang Jiming, Li Shouxin, Yang Zhenguo, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime[J]. International Journal of Fatigue, 2007, 29(4): 765-771. [4]李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能—非金属夹杂物的影响[M]. 北京: 冶金工业出版社. 2010. Li Shouxin, Weng Yuqing, Hui Weijun, et al. Very High Cycle Fatigue Properties of High Strength Steel—Effective of Nonmetallic Inclusions[M]. Beijing: Metallurgical Industry Press, 2010. [5]程 礼, 焦胜博, 李全通, 等. 超高周疲劳与断裂[M]. 北京: 国防工业出版社, 2017. [6]Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 84: 40-52. [7]周 磊, 宋亚南, 王海斗, 等. 超高周疲劳的影响因素及疲劳机理的研究进展[J]. 材料导报, 2017, 31(17): 84-89. Zhou Lei, Song Yanan, Wang Haidou, et al. Influencing factors and fatigue mechanism of ultra high cycle fatigue: An interview[J]. Materials Reports, 2017, 31(17): 84-89. [8]洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48: 1-65. Hong Youshi, Sun Chengqi, Liu Xiaolong. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48: 1-65. [9]Murakami Y, Sakae C, Ichimaru K. Three-dimension fracture mechanics analysis of pit formation mechanism under lubricated rolling-sliding contact loading[J]. Tribology Transactions, 1994, 37(3): 445-454. [10]高古辉, 陈倩如, 郭浩冉, 等. 贝/马复相钢超高周疲劳行为及非夹杂起裂[J]. 材料导报, 2017, 31(20): 48-52. Gao Guhui, Chen Qianru, Guo Haoran, et al. Very high cycle fatigue behaviors of bainite/martensite multi-phase steel and mechanism of non-inclusion induced crack initiations[J]. Materials Reports, 2017, 31(20): 48-52. [11]Jaap Schijve. 结构与材料的疲劳[M]. 2版. 吴学仁, 等, 译. 北京: 航空工业出版社, 2014. [12]Hong Youshi, Sun Chengqi. The nature and the mechanism of crack initiation and early growth for very high-cycle fatigue of metallic materials an overview[J]. Theoretical and Applied Fracture Mechanics, 2017, 92: 331-350. [13]Murakami Y, Yokoyama N, Nagata J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 735-746. [14]鲁连涛, 李 伟, 张继旺, 等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J]. 金属学报, 2009, 45(1): 73-78. Lu Liantao, Li Wei, Zhang Jiwang, et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica, 2009, 45, (1): 73-78. [15]邹家祥. 轧钢机械[M]. 3版. 北京: 冶金工业出版社, 2000. |