[1]陈维平, 杨少锋, 韩孟岩. 陶瓷/铁基合金复合材料的研究进展[J]. 中国有色金属学报, 2010, 20(2): 257-266. Chen Weiping, Yang Shaofeng, Han Mengyan. Research progress on ceramic/Fe-based alloy composites[J]. Chinese Journal of Nonferrous Metals, 2010, 20(2): 257-266. [2]张兆峰, 宫本奎, 范翠玲, 等. 钛合金微弧氧化陶瓷膜层的研究进展[J]. 材料科学, 2019, 9(8): 766-773. Zhang Zhaofeng, Gong Benkui, Fan Cuiling, et al. Research progress of micro-arc oxidation ceramic coating on titanium alloy[J]. Material Sciences, 2019, 9(8): 766-773. [3]邱敬文, 付正帆, 潘 迪, 等. 高熵合金颗粒增强钛合金复合材料摩擦磨损行为研究[J]. 材料科学, 2018, 8(10): 1007-1015. Qiu Jingwen, Fu Zhengfan, Pan Di, et al. The wear behavior of high-entropy alloy particles reinforced titanium alloy composite[J]. Material Sciences, 2018, 8(10): 1007-1015. [4]Du Jinlong, Chen Xingyu, Jia Xiaogang, et al. Microstructure and properties of metallurgical bonding Mo/Pt/Ag laminated metal matrix composites[J]. Materials Science and Engineering A, 2019, 743: 675-683. [5]Liu Yang, Bian Xiufang, Yang Jianfei, et al. An investigation of metallurgical bonding in Al-7Si/gray iron bimetal composites[J]. Journal of Materials Research, 2013, 28(22): 3190-3198. [6]李荣久. 陶瓷-金属复合材料[M]. 北京: 冶金工业出版社, 2004. [7]Lemster K, Graule T, Kuebler J. Processing and microstructure of metal matrix composites prepared by pressureless Ti-activated infiltration using Fe-base and Ni-base alloys[J]. Materials Science and Engineering A, 2005, 393(1): 229-238. [8]Cevik E, Gundogan M. Dry sliding wear behavior of (GNPs+TiB2)-reinforced AZ91 magnesium matrix hybrid composites produced by pressure infiltration casting method[J]. International Journal of Metal Casting, 2021, 15: 1250-1259. [9]Kennedy A R, Wood J D, Weager B M. The wetting and spontaneous infiltration of ceramics by molten copper[J]. Journal of Materials Science, 2000, 35: 2909-2912. [10]Guan Zhiping, Li Mingyu, Xia Kaixin, et al. Microstructure, mechanical properties and wear resistance of SiCp/AZ91 composite prepared by vacuum pressure infiltration[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 104-121. [11]朱俊璇, 刘海云, 王文龙, 等. Ti活化SiC/高铬铸铁复合材料组织结构及浸渗行为[J]. 金属热处理, 2019, 44(8): 84-89. Zhu Junxuan, Liu Haiyun, Wang Wenlong, et al. Microstructure and infiltration behavior of Ti-activated SiC/high chromium cast iron composites[J]. Heat Treatment of Metals, 2019, 44(8): 84-89. [12]Dunmead S D, Readey D W, Semler C E, et al. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J]. Journal of the American Ceramic Society, 2010, 72(12): 2318-2324. [13]Terry B S, Chinyamakobvu O S. Dispersion and reaction of TiC in liquid iron alloys[J]. Metal Science Journal, 2013, 8(5): 399-405. [14]Chen Jing, Li Wenjun, Jiang Wan. Characterization of sintered TiC-SiC composites[J]. Ceramics International, 2009, 35(8): 3125-3129. [15]Ho-Duc L H, El-Raghy T, Barsoum M W. Synthesis and characterization of 0.3Vf TiC-Ti3SiC2 and 0.3Vf SiC-Ti3SiC2 composites[J]. Journal of Alloys and Compounds, 2003, 350(1): 303-312. [16]Kim M K, Namkung J, Ahn Y S. The effect of Si and microstructure evolution on the thermal expansion properties of Fe-42Ni-Si alloy strips[J]. Journal of Materials Science, 2008, 43(9): 3112-3117. |