[1]华石伟, 庞 铭. Ti3SiC2对Q235钢表面激光熔覆制备镍基熔覆层性能的影响[J]. 材料热处理学报, 2021, 42(10): 133-140. Hua Shiwei, Pang Ming. Effect of Ti3SiC2 on properties of Ni based layers prepared by laser cladding on Q235 steel surface[J]. Transactions of Materials and Heat Treatment, 2021, 42(10): 133-140. [2]王 培, 叶源盛. Q235钢表面激光熔覆钛涂层[J]. 应用激光, 2018, 38(3): 377-381. Wang Pei, Ye Yuansheng. Titanium coating on Q235 steel surface by laser cladding[J]. Applied Laser, 2018, 38(3): 377-381. [3]张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11. Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11. [4]Zhu Lida, Xue Pengsheng, Lan Qiang, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106-915. [5]吴 军, 金 杰, 朱冬冬, 等. TiC添加量对高能激光熔覆Inconel718基陶瓷熔覆层显微组织和摩擦磨损性能的影响[J]. 表面技术, 2021, 50(9): 225-235. Wu Jun, Jin Jie, Zhu Dongdong, et al. Effect of TiC content on microstructure friction and wear properties of inconel718 based ceramic coatings prepared by high energy laser cladding[J]. Surface Technology, 2021, 50(9): 225-235. [6]聂学武, 周建忠, 徐家乐, 等. 超声振幅对激光熔覆WC/IN718复合熔覆层组织及性能的影响[J]. 表面技术, 2020, 49(9): 206-214. Nie Xuewu, Zhou Jianzhong, Xu Jiale, et al. Effect of ultrasound amplitude on microstructure and properties of laser cladding WC/IN718 composite coatings[J]. Surface Technology, 2020, 49(9): 206-214. [7]张 伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合熔覆层的组织与硬度[J]. 金属热处理, 2019, 44(7): 190-193. Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of in-situ synthesized VC-reinforced Fe-Ni-based composite coating by laser cladding[J]. Heat Treatment of Metals, 2019, 44(7): 190-193. [8]赵 菲, 刘子敬, 张 杰, 等. 超细VC对激光熔覆H13合金显微组织和耐磨性的影响[J]. 表面技术, 2022, 51(2): 232-240. Zhao Fei, Liu Zijing. Zhang Jie, et al. Effect of ultra-fine VC on microstructure and wear resistance of laser cladded H13 alloy[J]. Surface Technology, 2022, 51(2): 232-240. [9]李剑锋, 朱真才, 彭玉兴, 等. 原位合成M23C6-WC双相碳化物协同增强激光熔覆层摩擦磨损行为的研究[J]. 摩擦学学报, 2021, 41(6): 843-857. Li Jianfeng, Zhu Zhencai, Peng Yuxing, et al. Friction and wear behavior of in-situ synthesized M23C6-WC dual-carbides synergistically reinforced laser cladding coatings[J]. Tribology, 2021, 41(6): 843-857. [10]皮智敏, 周鸿凯, 黄志武, 等. WC-Cr3C2基金属陶瓷涂层的研究现状[J]. 热加工工艺, 2021, 50(2): 6-9. Pi Zhimin, Zhou Hongkai, Huang Zhiwu, et al. Research status of WC-Cr3C2 based cermet coating[J]. Hot Working Technology, 2021, 50(2): 6-9. [11]Ma Guoliang, Cui Hongzhi, Jiang Di, et al. The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding[J]. Materials Today Communications, 2022, 30: 103-223. [12]丁阳喜, 陈元凯, 邵晓峰. 激光熔覆原位合成TiC-VC复合增强镍基熔覆层的研究[J]. 热加工工艺, 2017, 46(18): 191-195. Ding Yangxi, Chen Yuankai, Shao Xiaofeng, et al. Study of TiC-VC compound reinforced Ni-based coatings produced by laser cladding in-situ synthesis[J]. Hot Working Technology, 2017, 46(18): 191-195. [13]李 伟, 徐培全, 李 华. VC与Cr3C2对钴基纳米碳化钨激光熔覆层的影响[J]. 热加工工艺, 2016, 45(20): 153-156. Li Wei, Xu Peiquan, Li Hua. Effect of VC and Cr3C2 on laser cladding layer of cobalt based nanocrystalline tungsten carbide[J]. Hot Working Technology, 2016, 45(20): 153-156. [14]倪晓杰, 张博文, 赵忠贤, 等. 激光熔覆Mo2NiB2-Cr7C3复合陶瓷熔覆层组织结构与性能研究[J]. 表面技术, 2021, 50(5): 60-69. Ni Xiaojie, Zhang Bowen, Zhao Zhongxian, et al. Investigation on the microstructure and properties of the laser cladded Mo2NiB2-Cr7C3 composite coatings[J]. Surface Technology, 2021, 50(5): 60-69. [15]王 崇, 赖玉军, 叶芳霞, 等. Cr7C3/Fe表面梯度复合材料的力学性能和耐磨性研究[J]. 热加工工艺, 2016, 45(14): 97-99, 102. Wang Chong, Lai Yujun, Ye Fangxia, et al. Study on mechanical properties and wear resistance of Cr7C3/Fe surface gradient composite[J]. Hot Working Technology, 2016, 45(14): 97-99, 102. |