[1]Deng P, Li L, Jia Y Q, et al. Chlorination behavior of low-grade titanium slag in AlCl3-NaCl molten salt[J]. JOM, 2022, 74(1): 213-221. [2]Vajpai S K, Sharma B, Ota M, et al. Effect of cold rolling and heat-treatment on the microstructure and mechanical properties of β-titanium Ti-25Nb-25Zr alloy[J]. Materials Science and Engineering A, 2018, 736: 323-328. [3]Yumak N, Aslanta K. Effect of heat treatment procedure on mechanical properties of Ti-15V-3Al-3Sn-3Cr metastable β titanium alloy[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 1066-1074. [4]Choi G, Lee K. Effect of cold rolling on the microstructural evolution of new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloys[J]. Materials Characterization, 2017, 123: 67-74. [5]Mantri S A, Choudhuri D, Behera A, et al. Role of isothermal omega phase precipitation on the mechanical behavior of a Ti-Mo-Al-Nb alloy[J]. Materials Science and Engineering A, 2019(767): 138397. [6]Sen M, Suman S, Kumar M, et al. Thermo-mechanical processing window for β phase recrystallization in Ti-5Al-5Mo-5V-3Cr alloy[J]. Materials Characterization, 2018, 146: 55-70. [7]Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate[J]. Acta Materialia, 2018, 152(1): 301-314. [8]Naseri R, Mitchell D R G, Savvakin D G, et al. The effect of β-phase condition on the tensile behaviour in a near-β Ti alloy produced by blended elemental powder metallurgy[J]. Materials Science and Engineering A, 2019(747): 232-243. [9]Li T, Kent D, Sha G, et al. Precipitation of the α-phase in an ultrafine grained beta-titanium alloy processed by severe plastic deformation[J]. Materials Science and Engineering A, 2014(605): 144-150. [10]Sadeghpour S, Abbasi A S M, Morakabati M, et al. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects[J]. Scripta Materialia, 2018, 145(6): 104-108.[11]Plaine A H, Silva M R D, Bolfarini C. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of the metastable β-type Ti-35Nb-7Zr-5Ta alloy[J]. Materials Research, 2019, 22(1): 20180462. [12]Sadeghpour S, Abbasi S M, Morakabati M, et al. Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy[J]. Materials and Design, 2017, 121: 24-35. [13]Yasser A, Mohamed A H G, Sengo K, et al. Biocompatibility of new low-cost (α+β)-type Ti-Mo-Fe alloys for long-term implantation[J]. Materials Science and Engineering C, 2019, 99: 552-562. [14]田 恬, 郑 琦, 商 铫, 等. 新型亚稳β型Ti-30Nb-1Mo-4Sn合金时效过程中ω相与α相的竞争[J]. 稀有金属, 2018, 42(1): 101-105. Tian Tian, Zheng Qi, Shang Yao, et al. Competition behavior of ω and α phase during aging of novel metastable β-type Ti-30Nb-1Mo-4Sn alloy[J]. Chinese Journal of Rare Metals, 2018, 42(1): 101-105. [15]Sadeghpour S, Abbasi S M, Morakabati M. Deformation-induced martensitic transformation in a new metastable β titanium alloy[J]. Journal of Alloys and Compounds, 2015, 650(15): 22-29. [16]Shi R P, Deep C D, Ankush K, et al. α phase growth and branching in titanium alloys[J]. Philosophical Magazine, 2022, 102(5): 389-412. [17]Azgomi N, Tetteh F, Boakye-Yiadom S. Influence of air cooling and aging on microstructure and wear properties of 3D-printed and conventionally produced medical-grade Ti6Al4V ELI alloy[J]. Metallurgical and Materials Transactions A, 2022, 53(3): 1069-1084. |