[1]万翛如, 许昌淦. 高强度及超高强度钢[M]. 北京: 机械工业出版社, 1988: 2. [2]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [3]Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel[J]. Defect and Diffusion Forum, 2011, 312-315: 110-115. [4]Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300m steel[J]. Metallurgical Transactions A, 1977, 8(9): 1439-1448. [5]赵 博, 许广兴, 贺 飞, 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37(6): 1-6. Zhao Bo, Xu Guangxing, He Fei, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. Journal of Aeronautical Materials, 2017, 37(6): 1-6. [6]Totten G E. Steel Heat Treatment: Metallurgy and Technologies (Second Edition)[M]. Boca Raton: CRC Press, 2006. [7]王立军, 蔡庆伍, 余 伟, 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46(6): 687-694. Wang Lijun, Cai Qingwu, Yu Wei, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metallurgica Sinica, 2010, 46(6): 687-694. [8]Morris Dilmore, James D R. Eglin steel—A low alloy high strength composition: US, 7537727 B2[P]. 2009-5-26. [9]王浩楠, 闫晋文, 李顺强, 等. 回火工艺对40CrNiMo 钢组织与性能的影响[J]. 南京理工大学学报, 2022, 46(3): 367-372. Wang Haonan, Yan Jinwen, Li Shunqiang, et al. Effect of tempering on microstructure and mechanical properties of 40CrNiMo steel[J]. Journal of Nanjing University of Science and Technology, 2022, 46(3): 367-372. [10]王金海, 郭 涛. 淬回火工艺对30CrNi2MoV钢组织与力学性能的影响[J]. 热加工工艺, 2022, 51(20): 152-156. Wang Jinhai, Guo Tao. Effects of quenching and tempering process on microstructure and mechanical properties of 30CrNi2MoV steel[J]. Hot Working Technology, 2022, 51(20): 152-156. [11]郑东升, 刘 丹, 罗 登, 等. 回火温度对超高强钢微观组织及力学性能的影响[J]. 材料热处理学报, 2020, 41(12): 90-96. Zheng Dongsheng, Liu Dan, Luo Deng, et al. Effect of tempering temperature on microstructure and mechanical properties of ultra-high strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 90-96. [12]刘宪民, 花 峰, 刘 蕤, 等. 热处理对30CrMnSiNi2A钢力学性能的影响[J]. 钢铁, 2003, 38(1): 43-47. Liu Xianmin, Hua Feng, Liu Rui, et al. Effect of heat treatment on the mechanical properties of steel 30CrMnSiNi2A[J]. Iron and Steel, 2003, 38(1): 43-47. [13]王春旭, 厉 勇, 韩 顺, 等. 高韧性易旋压易焊接超高强度D506A钢及制备方法: CN, 104328359 A[P]. 2015-02-04. [14]范新超, 王春旭, 厉 勇, 等. 回火温度对超高强度35Cr3Ni2SiMnMoVA 钢组织与性能的影响[J]. 金属热处理, 2017, 42(4): 95-98. Fan Xinchao, Wang Chunxu, Li Yong, et al. Effect of tempering temperature on microstructure and mechanical properties of ultra high strength 35Cr3Ni2SiMnMoVA steel[J]. Heat Treatment of Metals, 2017, 42(4): 95-98. [15]彭雯雯, 曾卫东, 康 超, 等. 热处理工艺对300M 超高强度钢组织和性能的影响[J]. 材料热处理学报, 2012, 33(3): 94-98. Peng Wenwen, Zeng Weidong, Kang Chao, et al. Effect of heat treatment on microstructure and properties of 300M ultrahigh strength steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 94-98. [16]王丙旭, 崔威威, 张 宇, 等. 回火温度对300M 钢组织和性能的影响[J]. 铸造技术, 2021, 42(8): 719-721. Wang Bingxu, Cui Weiwei, Zhang Yu, et al. Effect of tempering temperatures on microstructure and mechanical properties of 300M steel[J]. Foundry Technology, 2021, 42(8): 719-721. [17]路 妍, 王军华, 苏 杰, 等. 30Cr3Si2Mn2NiNb钢中未溶相的热力学计算及分析[J]. 材料工程, 2011(9): 1-5. Lu Yan, Wang Junhua, Su Jie. et al. Thermodynamic calculation and experimental analysis on undissolved phases of 30Cr3Si2Mn2NiNb steel[J]. Journal of Materials Engineering, 2011(9): 1-5. [18]宁 静, 杨卓越, 苏 杰, 等. 固溶温度对30Cr4Si2NiMoWNb超高强度钢力学性能的影响[J]. 钢铁研究学报, 2017, 29(12): 1030-1034. Ning Jing, Yang Zhuoyue, Su Jie, et al. Influence of solution treatment temperature on mechanical properties of 30Cr4Si2NiMoWNb steel[J]. Journal of Iron and Steel Research, 2017, 29(12): 1030-1034. [19]Chang Li, Smith G D W. The silicon effect in the tempering of martensite in steels[J]. Le Journal de Physique Colloques, 1984, 45(C9): 397-401. |