[1]Michael W Edwards, Stewart McIntyre N. Gas phase initial oxidation of Incoloy 800 surfaces [J]. Oxidation of Metals, 2013, 79(1/2): 179-200. [2]Akhiani Hamed, Nezakat Majid, Sonboli Ali, et al. The origin of annealing texture in a cold-rolled Incoloy 800H/HT after different strain paths [J]. Materials Science and Engineering A, 2014, 619: 334-344. [3]Elger Ragna, Pettersson Rachel. Effect of addition of 4% Al on the high temperature oxidation and nitridation of a 20Cr-25Ni austenitic stainless steel [J]. Oxidation of Metals, 2014, 82(5/6): 469-490. [4]Muralidharan G, Yamamoto Y, Brady M P, et al. Development of cast alumina-forming austenitic stainless steels [J]. JOM, 2016, 68(11): 2803-2810. [5]Yanar N M, Lutz B S, Garcia-Fresnillo L, et al. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels [J]. Oxidation of Metals, 2015, 84(5/6): 541-565. [6]Brady M P, Unocic K A, Lance M J, et al. Increasing the upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor [J]. Oxidation of Metals, 2011, 75(5/6): 337-357. [7]Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316(5823): 433-436. [8]Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60(7): 12-18. [9]Brady M P, Muralidharan G, Yamamoto Y, et al. Development of 1100 ℃ capable alumina-forming austenitic alloys [J]. Oxidation of Metals, 2017, 87(1/2): 1-10. [10]Xu Yulai, Zhang Xin, Sun Xiaoyang, et al. Roles of manganese in the high-temperature oxidation resistance of alumina-forming austenitic steels at above 800 ℃ [J]. Oxidation of Metals, 2012, 78(5/6): 349-362. [11]程晓农, 姚永泉, 李冬升, 等. 一种含铝奥氏体不锈钢的高温氧化行为 [J]. 金属热处理, 2017, 42(2): 72-75. Cheng Xiaonong, Yao Yongquan, Li Dongsheng, et al. High temperature oxidation behavior of alumina-forming austenitic stainless steel [J]. Heat Treatment of Metals, 2017, 42(2): 72-75. [12]Xu Yulai, Zhang Xin, Fan Lijun, et al. Improved oxidation resistance of 15wt%Cr ferritic stainless steels containing 0.08-2.45wt%Al at 1000 ℃ in air [J]. Corrosion Science, 2015, 100: 311-321. [13]Wen D H, Li Z, Jiang B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels [J]. Materials Characterization, 2018, 144: 86-98. [14]Shi Hao, Fetzer Renate, Tang Chongchong, et al. The influence of Y and Nb addition on the corrosion resistance of Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten Pb [J]. Corrosion Science, 2021, 179: 109152. [15]Yang Zhi, Pan Jie, Wang Zixie, et al. New insights into the mechanism of yttrium changing high-temperature oxide growth of Fe-13Cr-6Al-2Mo-0.5Nb alloy for fuel cladding [J]. Corrosion Science, 2020, 172: 108728. [16]Hayashi Shigenari, Kudo Daiki, Nagashima Ryouta, et al. Effect of Cu on oxidation behaviour of FCC Fe-Ni-Cr-Al and Ni-Cr-Al based alloys [J]. Corrosion Science, 2020, 163: 108273. [17]Chen Minghui, Li Wenbo, Shen Mingli, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corrosion Science, 2014, 82: 316-327. [18]Ji Hyun Kim, Il Soon Hwang. Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nuclear Engineering and Design, 2005, 235(9): 1029-1040. [19]Yang Guanjun, Li Chengxin, Li Changjiu, et al. Characterization of nonmelted particles and molten splats in plasma-sprayed Al2O3 coatings by a combination of scanning electron microscopy, X-ray diffraction analysis, and confocal Raman analysis [J]. Journal of Thermal Spray Technology, 2013, 22(2): 131-137. [20]Thierry D, Persson D, Leygraf C, et al. In-situ Raman spectroscopy combined with X-ray photoelectron spectroscopy and nuclear microanalysis for studies of anodic corrosion film formation on Fe-Cr single crystals [J]. Journal of the Electrochemical Society, 1988, 135(2): 305-310. [21]Beattie I R, Gilson T R. The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide [J]. Journal of the Chemical Society A, 1970, 1(1): 980-986. [22]Defaria D, Silva S V, Deoliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides [J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878. [23]Wang Zhongwu, Saxena S K, Lazor P, et al. An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr2O4[J]. Journal of Physics and Chemistry of Solids, 2003, 64(3): 425-431. [24]Zhang Xu, Li Dianzhong, Li Yiyi, et al. Oxidation behaviors of Fe-25Cr-20Ni-xNb austenitic weld metals at 1100 ℃ in ambient air: Role of elemental niobium [J]. Corrosion Science, 2019, 159: 108137. [25]Jia G, Xu W, Ouyang M, et al. Oxidation behavior of Ni-25Cr-10Fe-3Si-cNb alloys at 1000 ℃ in ambient air: Role of Laves phase [J]. Corrosion Science, 2021, 187: 109475. [26]Graham H C, Davis H H. Oxidation/vaporization kinetics of Cr2O3[J]. Journal of the American Ceramic Society, 1971, 54(2): 89-93. [27]李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001. Li Meishuan. High Temperature Corrosion of Metal[M]. Beijing: Metallurgical Industry Press, 2001. [28]Pilone Daniela, Felli Ferdinando. Isothermal oxidation behaviour of TiAl-Cr-Nb-B alloys produced by induction melting [J]. Intermetallics, 2012, 26: 36-39. [29]Xu W, Jia G, Pan J, et al. Roles of Nb on the oxidation characteristics and oxide scale evolution of Fe-25Cr-35Ni-2.5Al-xNb alloys at 1000 ℃ and 1100 ℃ [J]. Materials and Corrosion, 2022, 1-17. |