[1]Deng T T, Zheng Z Z, Li J J, et al. Surface polishing of AISI 304 stainless steel with micro plasma beam irradiation[J]. Applied Surface Science, 2019, 476: 796-805. [2]Yasa E U, Kruth J P U. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19(1): 389-395. [3]李养良, 罗红梅, 王 利, 等. 45钢多道搭接激光熔覆层的组织与性能[J]. 热加工工艺, 2009, 38(4): 68-70. Li Yangliang, Luo Hongmei, Wang Li, et al. Structure and properties of laser cladding with single and overlapping clad tracks on 45 steel[J]. Hot Working Technology, 2009, 38(4): 68-70. [4]Ardila-Rodríguez L A, Menezes B C, Pereira L A, et al. Surface modification of aluminum alloys with carbon nanotubes by laser surface melting[J]. Surface and Coatings Technology, 2019, 377: 124930. [5]Ma C P, Peng G, Nie L, et al. Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement[J]. Applied Surface Science, 2018, 445: 211-216. [6]Kusinski J, Kac S, Kopia A, et al. Laser modification of the materials surface layer—A review paper[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60(4): 711-728. [7]Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review[J]. Materials and Design, 2014, 58: 412-425. [8]Burzic B, Hofele M, Mürdter S, et al. Laser polishing of ground aluminum surfaces with high continuous wave laser[J]. Journal of Laser Applications, 2016, 29(1): 011701. [9]Xiu C, Hu S, Song W, et al. Improvement in corrosion resistance of a nodular cast iron surface modified by plasma beam treatment[J]. Applied Surface Science, 2013, 286: 334-343. [10]张德强, 牛兴林, 李金华, 等. Q235D激光多层熔覆实验研究[J]. 机械设计制造, 2016(4): 80-82. Zhang Deqiang, Niu Xinglin, Li Jinhua, et al. Research on Q235D multilayer laser cladding[J]. Machinery Design & Manufacture, 2016(4): 80-82. [11]Sundqvist J, Manninen T, Heikkinen H P, et al. Laser surface hardening of 11%Cr ferritic stainless steel and its sensitisation behaviour[J]. Surface and Coatings Technology, 2018, 344: 673-679. [12]Kumar S, Ghosh P K, Kumar R. Surface modification of AISI 4340 steel by multi-pass TIG arcing process[J]. Journal of Materials Processing Technology, 2017, 249: 394-406. [13]Yu J, Wang R, Wei D, et al. Effect of different scanning modes on the surface properties of continuous electron beam treated 40CrMn steel[J]. Nuclear Instruments and Methods in Physics Research Section B, 2020, 467: 102-107. [14]Adebiyi D I, Popoola A, Pityana S L. Microstructural evolution at the overlap zones of 12Cr martensitic stainless steel laser alloyed with TiC[J]. Optics and Laser Technology, 2014, 61: 15-23. [15]Wang S H, Wu S W, Jin S T. Kinetics of carbide layer forming on the surface of steel in molten systems[J]. International Journal of Minerals Metallurgy and Materials, 1998, 5(2): 75-79. [16]Deng S Q, Godfrey A W, Liu W, et al. Effects of normal stress, surface roughness, and initial grain size on the microstructure of copper subjected to platen friction sliding deformation[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(1): 59-71. [17]王 荣, 孟城功, 魏德强, 等. 40CrNiMoA钢扫描电子束表面抛光改性的研究[J]. 热加工工艺, 2021, 50(16): 75-80. Wang Rong, Meng Chenggong, Wei Deqiang, et al. Study on surface modification of 40CrNiMoA steel by scanning electron beam[J]. Hot Working Technology, 2021, 50(16): 75-80. |