[1]Luong H, Hill M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A, 2010, 527(3): 699-707. [2]Achintha M, Nowell D, Fufari D, et al. Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling[J]. International Journal of Fatigue, 2014, 62: 171-179. [3]Lim H, Kim P, Jeong H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354. [4]乔红超, 赵吉宾, 陆 莹. 纳秒脉宽 Nd∶YLF 激光冲击强化激光器的研制及分析[J]. 中国激光, 2013, 40(8): 1-7. Qiao Hongchao, Zhao Jibin, Lu Ying. Develop and analysis of nanosecond pulse width Nd∶YLF laser for laser peening[J]. Chinese Journal of Lasers, 2013, 40(8): 1-7. [5]胡太友, 乔红超, 赵吉宾, 等. 激光冲击强化设备的开发[J]. 光电工程, 2017, 44(7): 732-737. Hu Taiyou, Qiao Hongchao, Zhao Jibin, et al. Development of laser shock peening equipment[J]. Opto-Electronic Engineering, 2017, 44(7): 732-737. [6]Lu Y, Yang Y, Zhao J, et al. Impacton mechanical properties and microstructural response of nickel-based superalloy GH4169 subjected to warm laser shock peening[J]. Materials, 2020, 13(22): 5172. [7]Zhao J, Wu J, Hu X, et al. Effect of laser shock processing on mechanical properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy[J]. Optik, 2020: 164715. [8]Qiao H, Zhao J, Gao Y. Experimental investigation of laser peening on TiAl alloy microstructure and properties[J]. Chinese Journal of Aeronautics, 2015, 28(2): 609-616. [9]乔红超. 激光冲击强化对 6082 铝合金机械性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061404. Qiao Hongchao. Effect of laser shock peening on mechanical properties of 6082 aluminum alloy[J]. Laser & Optoelectronics Process, 2015, 52(6): 061404. [10]Shi X, Feng X, Teng J, et al. Effect of laser shock peening on microstructure and fatigue properties of thin-wall welded Ti-6A1-4V alloy[J]. Vacuum, 2021, 184: 109986. [11]Pan X, Wang X, Tian Z, et al. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4V titanium alloy subjected to laser shock peening[J]. Journal of Alloys and Compounds, 2021, 850: 156672. [12]Li X, He W, Luo S, et al. Simulation and experimental study on residual stress distribution in titanium alloy treated by laser shock peening with flat-top and gaussian laser beams[J]. Materials, 2019, 12(8): 1343. [13]Luo S H, He W F, Zhou L C, et al. Aluminizing mechanism on a nickel-based alloy with surface nanostructure produced by laser shock peening and its effect on fatigue strength[J]. Surface and Coatings Technology, 2018, 342: 29-36. [14]Ren X, Chen B, Jiao J, et al. Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage[J]. Opticsand Laser Technology, 2020, 121: 105784. [15]Zhou W, Ren X, Yang Y, et al. Tensile behavior of nickel with gradient microstructure produced by laser shock peening[J]. Materials Science and Engineering A, 2020, 771: 138603. [16]Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127: 252-266. [17]Li K, Hu Y, Yao Z. Experimental study of micro dimple fabrication based on laser shock processing[J]. Opticsand Laser Technology, 2013, 48: 216-225. [18]Van Aswegen D C, Polese C. Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels[J]. International Journal of Fatigue, 2021, 142: 105969. [19]Chattopadhyay A, Muvvala G, Sarkar S, et al. Effect of laser shock peening on microstructural, mechanical and corrosion properties of laser beam welded commercially pure titanium[J]. Optics and Laser Technology,2021, 133: 106527. [20]Siddaiah A, Mao B, Kasar A K, et al. Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy[J]. Wear, 2020, 462-463: 203490. [21]亓 岩. LD泵浦Nd∶YLF激光器[D]. 长春: 中国科学院研究生院, 2005: 4-7. Qi Yan. LD pumped Nd∶YLF laser[D]. Changchun: Graduate School of Chinese Academy of Sciences, 2005: 4-7. [22]Clauer. Laser shock peening, the path to production[J]. Metals, 2019, 9(6): 626. [23]孙昀杰. 深冷激光喷丸强化TC6钛合金振动疲劳特性研究[D]. 镇江: 江苏大学, 2019: 33. Sun Yanjie. Investigation on vibration fatigue characteristic of TC6 alloy subjected to cryogenic laser peening[D]. Zhenjiang: Jiangsu University, 2019: 33. [24]Gujba A K, Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening[J]. Materials, 2014, 7(12): 7925-7974. |