[1]王海涛, 张国玲, 于化顺, 等. 铬、铝、硅对铁基高温合金抗氧化性能的影响[J]. 材料工程, 2008(12): 73-77. Wang Haitao, Zhang Guoling, Yu Huashun, et al. Effects of chromium, aluminium and silicon on oxidation resistance of Fe-base super alloy[J]. Journal of Materials Engineering, 2008(12): 73-77. [2]程晓农, 王植栋, 李冬升, 等. 新型铁铬镍合金固溶处理后的组织和性能[J]. 金属热处理, 2013, 38(6): 19-23. Cheng Xiaonong, Wang Zhidong, Li Dongsheng, et al. Microstructure and properties of a Fe-Cr-Ni alloy after solution treatment[J]. Heat Treatment of Metals, 2013, 38(6): 19-23. [3]崔令江, 林熙原, 朱 强, 等. 高温合金热处理工艺研究进展[J]. 材料导报, 2016, 30(13): 106-110, 132. Cui Lingjiang, Lin Xiyuan, Zhu Qiang, et al. Research progress on heat treatment process of superalloys[J]. Materials Review, 2016, 30(13): 106-110, 132. [4]吴 静, 刘永长, 李 冲, 等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35. Wu Jing, Liu Yongchang, Li Chong, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents[J]. Acta Metallurgica Sinica, 2020, 56(1): 21-35. [5]Shankar G, Madhavan R, Kumar R, et al. Micro-mechanism of evolution of microstructure and texture in Ni-Fe alloys[J]. Materialia, 2020, 13: 100811. [6]张学元, 刘 骏. 沿海建筑用00Cr25Ni7Mo4N双相不锈钢的热处理与性能[J]. 金属热处理, 2019, 44(7): 150-155. Zhang Xueyuan, Liu Jun. Heat treatment and properties of 00Cr25Ni7Mo4N duplex stainless steel for coastal construction[J]. Heat Treatment of Metals, 2019, 44(7): 150-155. [7]于海成, 严与辉, 刘小杨, 等. 双相不锈钢成分、性能及析出相分析[J]. 特殊钢, 2019, 40(3): 53-58. Yu Haicheng, Yan Yuhui, Liu Xiaoyang, et al. Analysis on composition, properties and precipitated phases of duplex stainless steel[J]. Special Steel, 2019, 40(3): 53-58. [8]Hadadzadeh A, Shahriari A, Amirkhiz B S, et al. Additive manufacturing of an Fe-Cr-Ni-Al maraging stainless steel: Microstructure evolution, heat treatment, and strengthening mechanisms[J]. Materials Science and Engineering A, 2020, 787: 139470. [9]Zhu C, Zeng J, Wang W, et al. Mechanism of δ→δ+γ phase transformation and hardening behavior of duplex stainless steel via sub-rapid solidification process[J]. Materials Characterization, 2020, 170: 110679. [10]张 珂, 金传伟, 吴园园. 316L不锈钢金属间相固溶过程中的微结构表征[J]. 冶金分析, 2019, 39(8): 8-13. Zhang Ke, Jin Chuanwei, Wu Yuanyuan. Microstructure characterization of intermetallic phases in 316L stainless steel during solution process[J]. Metallurgical Analysis, 2019, 39(8): 8-13. [11]Zhang B, Jiang Z, Li H, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature[J]. Materials Characterization, 2017, 129: 31-39. [12]彭 旭, 卜恒勇, 李萌蘖. 5CrNiMoV钢的奥氏体化动力学预测[J]. 金属热处理, 2020, 45(9): 227-232. Peng Xu, Bu Hengyong, Li Mengnie. Prediction of austenitization kinetics of 5CrNiMoV steel[J]. Heat Treatment of Metals, 2020, 45(9): 227-232. [13]贺连芳, 李辉平, 盖 康, 等. 55CrMo钢的奥氏体化相变动力学[J]. 材料热处理学报, 2015, 36(10): 255-260. He Lianfang, Li Huiping, Gai Kang, et al. Phase-transformation kinetics of austenization for 55CrMo steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 255-260. [14]Kong Lingnan, Liu Yaohui, Liu Jia'an, et al. Kinetics of the austenitization in the Fe-Mo-C ternary alloys during continuous heating[J]. Open Physics, 2016, 14(1): 695-702. [15]蒋世川, 张 健, 刘庭耀, 等. 固溶处理对GH3128合金奥氏体晶粒长大的影响[J]. 钢铁钒钛, 2019, 40(5): 150-156. Jiang Shichuan, Zhang Jian, Liu Tingyao, et al. Effect of solution treatment on the austenite grain growth of GH3128 alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(5): 150-156. |