[1]孙春英, 张金娜. LNG产业发展现状和前景分析[J]. 天津科技, 2017, 44(10): 94-96. Sun Chunying, Zhang Jinna. Development status and prospect analysis of LNG industry[J]. Tianjin Science and Technology, 2017, 44(10): 94-96. [2]高文晓. 液化天然气(LNG)储运安全问题与发展前景研究[J]. 石化技术, 2018, 25(5): 68-69. Gao Wenxiao. Safety and development prospect of liquefied natural gas (LNG) storage and transportation[J]. Petrochemical Industry Technology, 2018, 25(5): 68-69. [3]李荣斌, 秦品强, 陈永强, 等. 不同两相区淬火温度对9Ni钢组织与性能的影响[J]. 金属热处理, 2021, 46(7): 18-22. Li Rongbin, Qin Pingqiang, Chen Yongqiang, et al. Effect of different intercritical quenching temperature on microstructure and properties of 9Ni steel[J]. Heat Treatment of Metals, 2021, 46(7): 18-22. [4]Vardavoulias M, Papadimitriou G. Effect of Ni addition on the fracture behavior of a cast ferritic stainless steel[J]. Materials Letters, 1996, 27(6): 349-353. [5]Wu D Y, Han X L, Tian H T, et al. Microstructural characterization and mechanical properties analysis of weld metals with two Ni contents during post-weld heat treatments[J]. Metallurgical and Materials Transactions A, 2015, 46(5): 1973-1984. [6]Li S, Wang Y L, Wang X T. Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe-20Cr-xNi alloys[J]. Materials Science and Engineering A, 2015, 639(4): 640-646. [7]Kim J I, Morris J W. The composition of precipitated austenite in 5.5Ni steel[J]. Metallurgical Transactions A, 1981, 12(11): 1957-1963. [8]Nishigami H, Kusagawa M, Yamashita M. Development and realization of large scale LNG storage tank applying 7% nickel steel plate[C]//Kuala Lumpur 2012 World Gas Conference. Kuala Lumpur, Malaysia, 2012: 1-18. [9]Kim J I, Syn C K, Morris J W. Microstructural sources of toughness in QLT-treated 5.5Ni cryogenic steel[J]. Metallurgical Transactions A, 1983, 14(1): 93-103. [10]杨跃辉, 苑少强, 刘 坚, 等. 快速加热回火过程中9Ni钢组织的演化[J]. 材料热处理学报, 2019, 40(6): 97-102. Yang Yuehui, Yuan Shaoqiang, Liu Jian, et al. Microstructure evolution of 9Ni steel during rapid heating and tempering[J]. Transaction of Materials and Heat Treatment, 2019, 40(6): 97-102. [11]朱绪祥, 刘东升. 低C含7.7%Ni低温钢经两相区淬火后的组织性能[J]. 钢铁, 2013, 48(11): 72-78, 83. Zhu Xuxiang, Liu Dongsheng. Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J]. Iron and Steel, 2013, 48(11): 72-78, 83. [12]Hoshino M, Saitoh N, Muraoka H, et al. Development of super-9%Ni steel plates with superior low-temperature toughness for LNG Storage Tanks[J]. Nippon Steel Technical Report, 2004, 90(5): 20-24. [13]谢章龙, 刘振宇, 王国栋. 热处理工艺对9 Ni钢组织与性能的影响[J]. 金属热处理, 2010, 35(6): 37-42. Xie Zhanglong, Liu Zhenyu, Wang Guodong. Influence of heat treatment processes on microstructure and properties of 9Ni steel[J]. Heat Treatment of Metals, 2010, 35(6): 37-42. [14]周晓光, 陈其源, 刘振宇, 等. Ti微合金化汽车大梁钢510 L动态再结晶行为[J]. 东北大学学报(自然科学版), 2018, 39(5): 624-629. Zhou Xiaoguang, Chen Qiyuan, Liu Zhenyu, et al. Dynamic recrystallization behaviors of Ti micro-alloyed 510L steel for automobile frame[J]. Journal of Northeastern University (Natural Science), 2018, 39(5): 624-629. [15]Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International, 2006, 46(11): 1679-1684. [16]Avrami M. Transformation-time relations for random distribution of nuclei[J]. Journal of Chemical Physics, 1940, 8(2): 212-224. [17]Wahabi M E I, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: A comparative study[J]. Materials Science and Engineering A, 2003, 343(1/2): 116-125. |