[1]朱正锋, 张国荣, 章正晓. 铸渗技术研究现状及发展趋势[J]. 中国铸造装备与技术, 2015(5): 1-4. Zhu Zhengfeng, Zhang Guorong, Zhang Zhengxiao. The research actuality and development tendency on casting infiltration technology[J]. China Foundry Machinery and Technology, 2015(5): 1-4. [2]Davis K G, Magny J G. Cast-in-place hard facing[J]. AFS Transaction, 1981, 89: 385-402. [3]秦泗栋, 王树奇, 鞠新庆, 等. 钢表面铸渗烧结涂层的研究[J]. 表面技术, 2009, 38(4): 60-62. Qin Sidong, Wang Shuqi, Ju Xinqing, et al. Research on casting penetration process for steel surface[J]. Surface Technology, 2009, 38(4): 60-62. [4]李 珍, 陈 跃. 铸渗成型技术工艺及发展现状[J]. 铸造技术, 2004, 25(8): 651-653. Li Zhen, Chen Yue. Development condition and application prospect on casting penetration hardening process[J]. Foundry Technology, 2004, 25(8): 651-653. [5]张 雄. 消失模铸造镁合金表面合金化研究[D]. 武汉: 华中科技大学, 2011. Zhang Xiong. Research on surface alloying of lost foam casting magnesium alloy[D]. Wuhan: Huazhong University of Science and Technology, 2011. [6]王 西, 魏世忠, 吴修德, 等. 铸渗表面耐磨材料的现状及趋势[J]. 铸造, 2018, 67(1): 24-27. Wang Xi, Wei Shizhong, Wu Xiude, et al. Present situation and trend of surface cast-penetrated wear resistant materials[J]. Foundry, 2018, 67(1): 24-27. [7]李祖来, 蒋业华, 周 荣. 铸渗法制备钢铁基表面耐磨复合材料[J]. 铸造设备研究, 2003 (3): 27-30. Li Zulai, Jiang Yehua, Zhou Rong. Using cast-penetrating process to obtain metal matrix wear resistant surface composites[J]. Research Studies on Foundry Equipment, 2003(3): 27-30. [8]贾利晓, 陈 跃, 张永振, 等. 铸渗技术及研究现状[J]. 铸造技术, 2003, 24(5): 170-171. Jia Lixiao, Chen Yue, Zhang Yongzhen, et al. Research development of casting infiltration technology[J]. Foundry Technology, 2003, 24(5): 170-171. [9]张光钧, 李 军, 李文戈. 激光表面改性[J]. 金属热处理, 2021, 46(1): 148. Zhang Guangjun, Li Jun, Li Wenge. Surface modification of laser[J]. Heat Treatment of Metals, 2021, 46(1): 148. [10]夏同川, 刘 汀, 张 林, 等. 激光熔覆Fe/NiCr-Cr3C2复合涂层的组织和磨损性能[J]. 金属热处理, 2021, 46(5): 196-202. Xia Tongchuan, Liu Ting, Zhang Lin, et al. Microstructure and wear resistance of laser clad Fe/NiCr-Cr3C2 composite coating[J]. Heat Treatment of Metals, 2021, 46(5): 196-202. [11]Wang Fangfang, Xu Liujie, Wei Shizhong, et al. Preparation and wear properties of high-vanadium alloy composite layer[J]. Friction, 2021: 1-14. [12]魏世忠, 祝要民, 陈振华, 等. 铸渗表面合金化层的组织与性能研究[J]. 材料开发与利用, 1997, 12(1): 34-35. Wei Shizhong, Zhu Yaomin, Chen Zhenhua, et al. Structure and properties of surface alloyed layer on permeation casting[J]. Development and Application of Materials, 1997, 12(1): 34-35. [13]Li Yan, Wei Shizhong, Xu Liujie, et al. Microstructure and properties of interface high-speed steel reinforced by in-situ VC/35CrMo steel compound roll[J]. Advanced Materials Research, 2010, 105-106: 488-491. [14]王 西. 高钒高耐磨合金铸渗层制备及耐磨性能研究[D]. 荆州: 长江大学, 2018. Wang Xi. Study on the preparation and wear-resisting properties of high vanadium resistant alloy castings[D]. Jingzhou, Yangtze University, 2018. [15]Xu Liujie, Wang Fangfang, Zhou Yucheng, et al. Fabrication and wear property of in-situ micro-nano dual-scale vanadium carbide ceramics strengthened wear-resistant composite layers[J]. Ceramics International, 2021, 47: 953-964. [16]魏 毅, 张 洋, 谷亦杰, 等. 铬含量对高碳铬铁铸渗层组织及性能的影响[J]. 金属热处理, 2017, 42(5): 33-37. Wei Yi, Zhang Yang, Gu Yijie, et al. Effect of Cr content on microstructure and mechanical properties of high carbon ferrochrome cast-infiltrated layer[J]. Heat Treatment of Metals, 2017, 42(5): 33-37. [17]熊雨雷. 强磁场下碳化物的磁性研究[D]. 武汉: 武汉科技大学, 2019. Xiong Yulei. Magnetism study of carbide under high magnetic field[D]. Wuhan: Wuhan University of Science and Technology, 2019. |