[1]Guerin S, Pastol J L, Leroux C, et al. Synergy effect of LBE and hydrogenated helium on resistance to LME of T91 steel grade[J]. Journal of Nuclear Materials, 2003, 318(1): 339-347. [2]何利军, 周 龙, 汤淳坡, 等. 长时服役后T92钢管的微观组织及力学性能变化[J]. 金属热处理, 2021, 46(7): 31-36. He Lijun, Zhou Long, Tang Chunpo, et al. Microstructure evolution and property change of T92 heat resistant steel pipe after long term service[J]. Heat Treatment of Metals, 2021, 46(7): 31-36. [3]谌 康, 蔡文河, 杜双明, 等. 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响[J]. 金属热处理, 2021, 46(2): 66-73. Shen Kang, Cai Wenhe, Du Shuangming, et al. Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel[J]. Heat Treatment of Metals, 2021, 46(2): 66-73. [4]赵勇桃, 姜亚君, 鲁海涛, 等. 热处理对国外P92钢显微组织及晶粒度的影响[J]. 金属热处理, 2020, 45(9): 57-62. Zhao Yongtao, Jiang Yajun, Lu Haitao, et al. Effect of heat treatment on microstructure and grain size of imported P92 steel[J]. Heat Treatment of Metals, 2020, 45(9): 57-62. [5]惠晓涛, 傅育文, 杜春雷, 等. 国产SA-182F92钢冷裂敏感性研究[J]. 锅炉技术, 2009, 40(1): 49-52. Hui Xiaotao, Fu Yuwen, Du Chunlei, et al. China-made SA-182F92 steel cold sensitive research[J]. Boiler Technology, 2009, 40(1): 49-52. [6]杜春雷, 惠晓涛, 杨惠勤, 等. 国产F92耐热钢焊接接头性能试验与研究[J]. 锅炉技术, 2009, 40(3): 52-57. Du Chunlei, Hui Xiaotao, Yang Huqin, et al. Welded joints performance test and research of China-made F92 heat-resistant steel[J]. Boiler Technology, 2009, 40(3): 52-57. [7]Atapour M, Ashrafizadeh F. Cyclic oxidation behavior of plasma nitrided valve steel[J]. Surface & Coatings Technology, 2012, 32(20): 853-860. [8]Issartel C, Buscail H, Caudron E, et al. Influence of nitridation on the oxidation of a 304 steel at 800 ℃[J]. Corrosion Science, 2004, 46(9): 2191-2201. [9]Issartel C, Buscail H, Caudron E, et al. Nitridation effect on the oxidation of a austenitic stainless steel AISI 304 at 900 ℃[J]. Applied Surface Science, 2004, 225(1-4): 14-20. [10]Cao Y, Norell M. Role of nitrogen uptake during the oxidation of 304L and 904L austenitic stainless steels[J]. Oxidation of Metals, 2013, 80(5/6): 479-491. [11]王志坚, 孙方宏. 新型F92铁素体耐热钢的铣削加工性能[J]. 机械工程材料, 2009, 33(5): 90-92, 96. Wang Zhijian, Sun Fanghong. Milling property of ferrite F92 heat-resistant steel[J]. Materials for Mechanical Engineering, 2009, 33(5): 90-92, 96. [12]Alsagabi S, Pasebani S, Charit I. High Temperature tensile properties and related microstructural evolution in grade 92 steel[C]//Mechanical and Creep Behavior of Advanced Materials, 2017, 229-242. [13]Gontijo L C, Machado R, Casteletti L C, et al. X-ray diffraction characterisation of expanded austenite and ferrite in plasma nitrided stainless steels[J]. Surface Engineering, 2010, 26(4): 265-270. [14]Sung J H, Kong J H, Yoo D K, et al. Phase changes of the AISI 430 ferritic stainless steels after high-temperature gas nitriding and tempering heat treatment[J]. Materials Science and Engineering A, 2008, 489(1/2): 38-43. [15]Corengia P, Ybarra G, Moina C, et al. Microstructure and corrosion behavior of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel[J]. Surface & Coatings Technology, 2004, 187(1): 63-69. [16]Ran Q X, Liu Q H, Xu Y L. Nitrogen-induced selective high-temperature internal oxidation behavior in duplex stainless steels 19Cr-10Mn-0.3Ni-xN[J]. Corrosion Science, 2015, 98: 737-747. [17]Tan L, Allen T R, Yang Y. Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. [18]Shirani Bidabadi M H, Yu Z, Rehman A, et al. High-temperature oxidation behavior of CrMoV, F91 and Mar-M247 superalloys exposed to laboratory air at 550 ℃[J]. Oxidation of Metals, 2018, 90(3): 401-419. [19]Swaminathan S, Mallika C, Krishna N G, et al. Evolution of surface chemistry and morphology of oxide scale formed during initial stage oxidation of modified 9Cr-1Mo steel[J]. Corrosion Science, 2014, 79(1): 59-68. [20]洪笑宇, 刘青欢, 徐裕来, 等. 新型镍基高温合金1100 ℃氧化行为的研究[J]. 上海金属, 2018, 40(5): 55-61. Hong Xiaoyu, Liu Qinghuan, Xu Yulai, et al. Oxidation behavior of a new Ni-based superalloy at 1100 ℃[J]. Shanghai Metals, 2018, 40(5): 58-64. [21]陈兴岩. 不锈钢气体渗氮改性研究[D]. 长沙: 湖南大学, 2016. [22]Bergamo T. Effect of nitridation on high temperature corrosion of ferritic stainless steel[D]. Chalmers: Chalmers University of Technology, 2013. [23]伍翠兰, 陈兴岩, 王 津, 等. 气体渗氮及后续回火工艺对2Cr13钢渗氮层的影响[J]. 湖南大学学报(自科版), 2016, 43(12): 1-10. Wu Cuilan, Chen Xingyan, Wang Jin, et al. Effect of gas nitriding and subsequent tempering on nitrided layer of 2Cr13 steel[J]. Journal of Hunan University (Natural Sciences) 2016, 43(12): 1-10. [24]Bianco M, Poitel S, Hong J E, et al. Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices[J]. Corrosion Science, 2020, 165: 108414. [25]Oddershede J, Christiansen T L, Ståhl K, et al. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite[J]. Scripta Materialia, 2010, 62(5): 290-293. [26]Parascandola S, Möller W, Williamson D L. The nitrogen transport in austenitic stainless steel at moderate temperatures[J]. Applied Physical Letters, 2000, 76(16): 2194-2196. [27]石全强, 刘 坚, 严 伟, 等. SIMP钢和T91钢在800 ℃的高温氧化行为[J]. 材料研究学报, 2016, 30(2): 81-86. Shi Quanqiang, Liu Jian, Yan Wei, et al. High temperature oxidation behavior of SIMP steel and T91 steel at 800 ℃[J]. Chinese Journal of Materials Research, 2016, 30(2): 81-86. |