[1]许 涛. 真空电阻炉的温度场分布规律方法研究[J]. 科技视界, 2019(6): 86-87. Xu Tao. Study on the temperature field distribution law of vacuum resistance furnace[J]. Science Technology Vision, 2019(6): 86-87. [2]王昊杰, 李 勇, 王昭东, 等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺, 2016, 45(24): 172-176, 180. Wang Haojie, Li Yong, Wang Zhaodong, et al. Numerical simulation and analysis of temperature field in heating chamber of vacuum carburizing furnace[J]. Hot Working Technology, 2016, 45(24): 172-176, 180. [3]雷金辉, 付 彤, 陈 焰. 内热式多级连续真空炉稳态温度场研究[J]. 特种铸造及有色合金, 2017, 37(7): 715-718. Lei Jinhui, Fu Tong, Chen Yan. Modeling of steady temperature field of multistage continuous heat-type vacuum furnace[J]. Special Casting and Nonferrous Alloys, 2017, 37(7): 715-718. [4]梁佰强, 王海龙. 基于ANSYS高真空钎焊炉温度场数值模拟研究[J]. 热加工工艺, 2020, 49(21): 139-142. Liang Baiqiang, Wang Hailong. Numerical simulation of temperature field of high vacuum brazing furnace based on ANSYS[J]. Hot Working Technology, 2020, 49(21): 139-142. [5]王明伟, 张立文, 江国栋, 等. 真空热处理炉温度场的有限元数值模拟[J]. 机械科学与技术, 2005(6): 748-750. Wang Mingwei, Zhang Liwen, Jiang Guodong, et al. FE numerical simulation of the temperature field of the vacuum heat treatment furnace[J]. Mechanical Science and Technology for Aerospace Engineering, 2005(6): 748-750. [6]王 同, 陆文林, 李 勍, 等. 热氢处理炉真空加热温度场数值模拟与分析[J]. 金属热处理, 2021, 46(2): 209-212. Wang Tong, Lu Wenlin, Li Qing, et al. Numerical simulation and analysis of vacuum heating temperature field of hydrogen treatment furnace[J]. Heat Treatment of Metals, 2021, 46(2): 209-212. [7]乔 达, 卞祥德, 付经伦, 等. 大型航空构件专用热氢处理炉流-热-固耦合仿真分析[J]. 金属热处理, 2021, 46(1): 214-219. Qiao Da, Bian Xiangde, Fu Jinglun, et al. Fluid-thermal-solid coupling simulation analysis of thermo hydrogen treatment furnace specially for large aviation components[J]. Heat Treatment of Metals, 2021, 46(1): 214-219. [8]吴道雄, 史鑫尧, 张雁祥. 真空热处理炉的隔热屏设计及传热学分析[J]. 热处理技术与装备, 2015, 36(5): 73-76. Wu Daoxiong, Shi Xinyao, Zhang Yanxiang. Analysis of heat transfer theory and design for heat shield of vacuum heat treatment furnace[J]. Heat Treatment Technology and Equipment, 2015, 36(5): 73-76. |