[1]Prasad R, Waghmare D T, Kumar K, et al. Effect of overlapping condition on large area NiTi layer deposited on Ti-6Al-4V alloy by TIG cladding technique [J]. Surface and Coatings Technology, 2020, 385: 125417. [2]Peng Y, Zhang W, Li T, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding [J]. Surface and Coatings Technology, 2020, 385: 125326. [3]张国栋, 杨 辉, 王麒瑜, 等. 铁素体不锈钢激光熔覆层组织和性能研究[J]. 机械工程学报, 2016, 52(12): 37-45. Zhang Guodong, Yang Hui, Wang Qiyu, et al. Microstructure and properties of laser cladding layer on ferritic stainless steel [J]. Journal of Mechanical Engineering, 2016, 52(12): 37-45. [4]薛 鹏, 张天刚, 张 倩, 等. 稀土对Ti811合金表面激光熔覆金属陶瓷复合涂层组织和性能的影响[J]. 热加工工艺, 2021(2): 97-99. Xue Peng, Zhang Tiangang, Zhang Qian, et al. Effects of rare earth on microstructure and properties of laser cladding cermet composite coating on Ti811 alloy [J]. Hot Working Technology, 2021(2): 97-99. [5]张光耀, 王成磊, 高 原, 等. 稀土La2O3对6063Al激光熔覆Ni基熔覆层微观结构的影响[J]. 中国激光, 2014, 41(11): 53-58. Zhang Guangyao, Wang Chenglei, Gao Yuan, et al. Effect of rare earth La2O3 on the microstructure of laser cladding Ni-based coatings on 6063Al alloys [J]. Chinese Journal of Lasers, 2014, 41(11): 53-58. [6]任仲贺, 武美萍, 李广阳, 等. TiO2/CeO2对Ni基激光熔覆层组织和性能的影响[J]. 激光与光电子学进展, 2019, 56(7): 204-210. Ren Zhonghe, Wu Meiping, Li Guangyang, et al. Effect of TiO2/CeO2 on microstructures and properties of Ni-based laser cladding layers [J]. Laser and Optoelectronics Progress, 2019, 56(7): 204-210. [7]Weng Fei, Yu Huijun, Chen Chuanzhong. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition [J]. Materials and Manufacturing Processes, 2016, 20(5): 1461-1467. [8]Zhang X, Zhang K, Ma J, et al. Effect of laser cladding Al-Ni-TiC powder on microstructure and properties of aluminum alloy [J]. Journal of Minerals and Materials Characterization and Engineering, 2017, 5(1): 29-38. [9]Zhu Rundong, Li Zhiyong, Li Xiaoxi, et al. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition [J]. Applied Surface Science, 2015, 353: 405-413. [10]傅耀坤, 王成磊, 郑 英, 等. 铝合金表面激光熔覆Re+Ni60电化学腐蚀性能研究[J]. 桂林电子科技大学学报, 2019, 39(3): 236-241. Fu Yaokun, Wang Changlei, Zheng Ying, et al. Study on electrochemical corrosion resistance of laser cladding Re+Ni60 on aluminum alloy [J]. Journal of Guilin University of Electronic Technology, 2019, 39(3): 236-241. [11]李 能, 熊华平, 秦仁耀, 等. 原位反应制备Ti2AlNb/TiC+Ti3SiC2梯度材料的激光熔覆组织及成形机理[J]. 机械工程学报, 2018, 54(8): 144-150. Li Neng, Xiong Huaping, Qin Renyao, et al. Microstructure and mechanism of Ti2AlNb/TiC+Ti3SiC2 gradient materials by In-situ reaction laser cladding [J]. Journal of Mechanical Engineering, 2018, 54(8): 144-150. [12]Li S N, Xiong H P, Li N, et al. Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding [J]. Ceramics International, 2017, 43(1): 961-967. [13]Liu Chuanming, Li Chonggui, Zhang Zhe, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Optics and Laser Technology, 2020, 123: 105926. [14]Zhang Peilei, Liu Xiaopeng, Yan Hua. Phase composition, microstructure evolution and wear behavior of Ni-Mn-Si coatings on copper by laser cladding [J]. Surface and Coatings Technology, 2017, 332: 504-510. [15]Ma Guozheng, Xu Binshi, Wang Haidou, et al. Research on the microstructure and space tribology properties of electric-brush plating Ni/MoS2-C composite coating [J]. Surface and Coatings Technology, 2013, 227: 142-149. [16]张光耀, 王成磊, 高 原, 等. 稀土对6063Al镍基激光熔覆层组织及摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(3): 335-341. Zhang Guangyao, Wang Chenglei, Gao Yuan, et al. Effect of rare earth on the microstructure and tribological properties of laser cladding Ni-based coatings on 6063Al [J]. Tribology, 2015, 35(3): 335-341. [17]王成磊, 梁朝杰, 周承华, 等. 基于稀土调控的激光熔覆Ni60强化铝合金的高温摩擦磨损性能研究[J]. 表面技术, 2020, 49(10): 69-80. Wang Chenglei, Liang Chaojie, Zhou Chenghua, et al. High temperature friction and wear properties of laser cladding Ni60 coating modified with rare earth on 6063 aluminum alloy base [J]. Surface Technology, 2020, 49(10): 69-80. [18]张志强, 杨 凡, 张宏伟, 等. 含稀土TiCx增强钛基激光熔覆层组织与耐磨性[J]. 航空学报, 2021, 42(7): 43-56. Zhang Zhiqiang, Yang Fan, Zhang Hongwei, et al. Microstructure and wear resistance of TiCx reinforced Ti-based laser cladding coating with rare earth [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 43-56. [19]Straffelini G, Molinari A. Mild sliding wear of Fe-0.2%C, Ti-6%Al-4%V and Al-7072: A comparative study [J]. Tribology Letters, 2011, 41(1): 227-238. [20]He X, Song R G, Kong D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding [J]. Optics and Laser Technology, 2019, 112: 339-348. [21]Song Shenhua, Sun Huajun, Wang Meng. Effect of rare earth cerium on brittleness of simulated welding heat-affected zones in a reactor pressure vessel steel [J]. Journal of Rare Earths, 2015, 33(11): 1204-1211. |