[1]刘耀中, 范崇惠. 高碳铬轴承钢滚动轴承零件热处理技术发展与展望[J]. 金属热处理, 2014, 39(1): 53-57. Liu Yaozhong, Fan Chonghui. Development and prospect of heat treatment technology for rolling bearing parts made of high carbon chromium bearing steel[J]. Heat Treatment of Metals, 2014, 39(1): 53-57. [2]Kim K H, Park S D, Kim J H, et al. Role of spheroidized carbides on the fatigue life of bearing steel[J]. Metals and Materials International, 2012, 18(6): 917-921. [3]冯路路, 吴开明, 乔文玮, 等. 轴承钢珠光体球化的研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 110-118. Feng Lulu, Wu Kaiming, Qiao Wenwei, et al. Research status and developing tendency of bearing steel spheroidization of pearlite[J]. China Metallurgy, 2020, 30(9): 110-118. [4]Li C S, Li Z X, Ren J Y, et al. Microstructure and properties of 1.0C-1.5Cr bearing steel in processes of hot rolling, spheroidization, quenching, and tempering[J]. Steel Research International, 2019, 90(3): 1800470. [5]Yang D Z, Brown E L, Matlock D K, et al. Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel[J]. Metallurgical Transactions A, 1985, 16(8): 1385-1392. [6]于文霞, 邢淑清, 蒙耀鑫, 等. 加磁场时效工艺对7A04铝合金析出物的影响[J]. 金属热处理, 2019, 44(5): 182-186. Yu Wenxia, Xing Shuqing, Meng Yaoxin, et al. Effect of magnetic field on precipitates of 7A04 aluminumalloy during solution treating and aging[J]. Heat Treatment of Metals, 2019, 44(5): 182-186. [7]Hao J, Zhang H, Zhang X, et al. Accelerated carbon atoms diffusion in bearing steel using electropulsing to reduce spheroidization processing time and improve microstructure uniformity[J]. Steel Research International, 2020, 91(7): 2000041. [8]Kang J H, Rivera-Díaz-Del-Castillo P E J. Carbide dissolution in bearing steels[J]. Computational Materials Science, 2013, 67: 364-372. [9]Hwang H, De Cooman B C. Influence of the initial microstructure on the spheroidization of SAE 52100 bearing steel[J]. Steel Research International, 2016, 87(1): 112-125. [10]Yi H L, Hou Z Y, Xu Y B, et al. Acceleration of spheroidization in eutectoid steels by the addition of aluminum[J]. Scripta Materialia, 2012, 67(7/8): 645-648. [11]Chattopadhyay S, Sellars C M. Kinetics of pearlite spheroidisation during static annealing and during hot deformation[J]. Acta Metallurgica, 1982, 30(1): 157-170. [12]中国机械工程学会热处理学会. 热处理手册[M]. 4版. 北京: 机械工业出版社, 2008. [13]Zhang Y, He C, Zhao X, et al. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel[J]. Journal of Magnetism and Magnetic Materials, 2004, 284: 287-293. [14]杨 钢, 冯光宏. 稳恒磁场对低碳锰铌钢γ→α相变的影响[J]. 钢铁研究学报, 2000(5): 31-35. Yang Gang, Feng Guanghong. Effect of constant magnetic field on γ→α phase transformation for low carbon Mn-Nb steel[J]. Journal of Iron and Steel Research, 2000(5): 31-35. [15]白庆伟, 麻永林, 邢淑清, 等. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20106. Bai Qingwei, Ma Yonglin, Xing Shuqing, et al. Precipitation and strengthening mechanism of Al-Zn-Mg-Cu alloy under controllable electromagnetic energy (CEME) aging treatment[J]. Materials Reports, 2021, 35(20): 20143-20106. [16]Hillert M, Jarl M. A model for alloying in ferromagnetic metals[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 1978, 2(3): 227-238. [17]Li J B, Yang C F, Dong H, et al. Computer simulations of phase transformation in steels[J]. Materials & Design, 2001, 22(1): 39-43. [18]Liu X J, Lu Y, Fang Y M, et al. Effects of external magnetic field on the diffusion coefficient and kinetics of phase transformation in pure Fe and Fe-C alloys[J]. Calphad, 2011, 35(1): 66-71. [19]Morikawa H, Sassa K, Asai S. Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field[J]. Materials Transactions, JIM, 1998, 39(8): 814-818. [20]崔 昆. 钢的成分组织与性能[M]. 2版. 北京: 科学出版社, 2019. [21]汪克林, 高先龙, 曹则贤. 量子体系的相空间规范变换[J]. 物理, 2021, 50(3): 177-181. Wang Kelin, Gao Xianlong, Cao Zexian. Gauge transformation of phase space for quantized systems[J]. Physics, 2021, 50(3): 177-181. |