[1]赵麦群, 王伟科, 张 颢, 等. 稀土改性42CrMoS易切削钢中的硫化物夹杂分析[J]. 金属热处理, 2004, 29(11): 20-23. Zhao Maiqun, Wang Weike, Zhang Hao, et al. Analysis on sulphide inclusions in free-cutting 42CrMoS steel modified by rare earth elements[J]. Heat Treatment of Metals, 2004, 29(11): 20-23. [2]王金龙, 乔爱云, 张行刚. 含硫易切削钢切削性机理与硫化物控制简述[J]. 包钢科技, 2015, 41(1): 30-32. Wang Jinlong, Qiao Aiyun, Zhang Xinggang. Summary on mechanical of machinability and control of sulfide for sulphur free-cutting steel[J]. Science and Technology of Baotou Steel, 2015, 41(1): 30-32. [3]王小红, 谢 兵, 冯仲渝. 国内外易切削钢的现状和研究进展[J]. 特殊钢, 2005, 26(4): 26-28. Wang Xiaohong, Xie Bing, Feng Zhongyu. Present status and development of research on free cutting steel at home and abroad[J]. Special Steel, 2005, 26(4): 26-28. [4]罗 刚, 王辉绵. 新型易切削不锈钢TBPS中MnS夹杂相对热塑性的试验研究[J]. 特殊钢, 2016, 37(2): 5-7. Luo Gang, Wang Huimian. Test and study on relative hot plasticity of MnS inclusion in a new free-cutting stainless steel TBPS[J]. Special Steel, 2016, 37(2): 5-7. [5]Ramalingam S, Basu K, Malkin S. Deformation index of MnS inclusions in resulphurized and leaded steels[J]. Material Science and Engineering, 1977, 29(2): 117-121. [6]张永军, 朱 辰, 王立峰, 等. 锡对提高材料切削性能作用的研究[J]. 金属热处理, 2006, 31(1): 27-29. Zhang Yongjun, Zhu Chen, Wang Lifeng, et al. Role of Tin for enhancing cutting characteristic of the free cutting steel[J]. Heat Treatment of Metals, 2006, 31(1): 27-29. [7]Matsui N, Hasegawa T, Fujiwara J. Effect of sulfide inclusion morphology on machinability and tool wear mechanism in low carbon free cutting steel[J]. Journal of the Japan Society for Precision Engineering, 2011, 77: 322-326. [8]李洪生, 高 辉. 钢中硫化锰的形态及对钢性能的影响[J]. 一重技术, 2004(4): 26-28. Li Hongsheng, Gao Hui. Form of manganese sulphide contained in steel and influences upon steel property[J]. CFHI Technology, 2004(4): 26-28. [9]丁 毅, 钱 发, 陈 刚. 电机轴疲劳断裂失效分析[J]. 金属热处理, 2001, 26(12): 52-53. Ding Yi, Qian Fa, Chen Gang. Failure analysis on fatigue of electric motor shaft[J]. Heat Treatment of Metals, 2001, 26(12): 52-53. [10]张 硕, 杨树峰, 李京社, 等. 碲处理控制Y15易切削钢中MnS夹杂物形貌[J]. 钢铁, 2017(9): 28-33. Zhang Shuo, Yang Shufeng, Li Jingshe, et al. Morphology of MnS inclusions in Y15 high sulfur free-cutting steel by tellurium treatment[J]. Iron and Steel, 2017(9): 28-33. [11]Katayama S. Effect of tool materials on surface machined roughness and cutting force of low-carbonresulfurized free-machining steels[J]. ISIJ International, 2007, 30(4): 331-337. [12]王来成, 蔡洪能, 孟令齐. 基于Thermo-calc微合金化元素对奥氏体不锈钢析出相影响的热力学分析[J]. 热加工工艺, 2021, 50(20): 39-42. Wang Laicheng, Cai Hongneng, Meng Lingqi. Therrnodynamic analysis of influence of micro-alloying elements on precipitation phase of austenitic stainless steel based on Thermo-calc[J]. Hot Working Technology, 2021, 50(20): 39-43. [13]Bo Sundman, Matthias Stratmann, Zhang Lijun, et al. Computational thermodynamics and its applications to materials science[J]. Materials China, 2015, 34(1): 15-28. [14]何燕霖, 李 麟, 叶 平, 等. Thermo-Calc和DICTRA软件系统在高性能钢研制中的应用[J]. 材料热处理学报, 2003, 24(4): 73-77. He Yanlin, Li Lin, Ye Ping, et al. Application of Thermo-Calc and DICTRA software package to study high-property steel[J]. Transactions of Materials and Heat Treatment, 2003, 24(4): 73-77. [15]夏晓玲, 李玉清. 5Cr21Mn9Ni4N钢中碳化物层状析出与晶界沉淀[J]. 特殊钢, 1993, 14(6): 36-40. Xia Xiaoling, Li Yuqing. Stratified carbide deposition and grain boundary precipitation in steel 5Cr21Mn9Ni4N[J]. Special Steel, 1993, 14(6): 36-40. [16]崔忠圻, 覃耀春. 金属学与热处理原理[M]. 北京: 机械工业出版社, 2007. [17]房 菲, 李静媛, 王一德. 含氮不锈钢凝固模式及显微组织研究[J]. 北京科技大学学报, 2014, 36(11): 1490-1496. Fang Fei, Li Jingyuan, Wang Yide. Solidification mode and microstructure of nitrogenous stainless steels[J]. Journal of University of Science and Technology Beijing, 2014, 36(11): 1490-1496. [18]邓振强, 刘建华, 何 杨, 等. FeCrAl不锈钢的平衡凝固相变与析出行为[J]. 工程科学学报, 2017, 39(5): 71-81. Deng Zhenqiang, Liu Jianhua, He Yang, et al. Phase transformations and precipitation behavior in FeCrAl stainless steel during equilibrium solidification[J]. Chinese Journal of Engineering, 2017, 39(5): 71-81. [19]朱强斌, 李 杰, 邓向阳, 等. 镁系易切削钢中夹杂物分析[J]. 钢铁钒钛, 2021, 42(2): 179-187, 192. Zhu Qiangbin, Li Jie, Deng Xiangyang, et al. Inclusion analysis in magnesium free-cutting steel[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 179-187, 192. [20]Ito Y, Matsubara N, Matsubara K. Formation of manganese sulfide in steel[J]. Transactions of the Iron and Steel Institute of Japan, 1981, 21(7): 477-484. [21]Ito Y, Yonezawa N, Matsubara K. Formation of manganese sulfide in low carbon steel[J]. Tetsu-to-Hagane, 1982, 68(10): 1569-1577. [22]Liu H, Chen W. Effect of total oxygen content on the machinability of low carbonresulfurized free cutting steel[J]. Steel Research International, 2012, 83(12): 1172-1179. [23]Shao X, Wang X, Jiang M. Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels[J]. ISIJ International, 2011, 51(12): 1995-2001. [24]孙荣耀, 郝士明. 稀土元素改善工具钢切削性能的研究[J]. 钢铁, 1982, 17(5): 58-63. Sun Rongyao, Hao Shiming. Investigation on the improvement of cutting properties of tool steels by the addition of rare earth elements[J]. Iron and Steel, 1982, 17(5): 58-63. [25]范 磊, 李 晨, 姜茂发. 稀土对高硫易切削钢中夹杂物的影响研究[J]. 钢铁钒钛, 2020, 41(6): 119-123. Fan Lei, Li Chen, Jiang Maofa. Experimental study on the effect of rare earth on inclusions in high-sulfur free-cutting steel[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 119-123. |