[1]Hamada A S, Karjalainen L P, Somani M C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels[J]. Materials Science and Engineering A, 2007, 467(1/2): 114-124. [2]Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1457-1464. [3]Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67. [4]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [5]Lun N, Saha D C, Macwan A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel[J]. Materials and Design, 2017, 131: 450-459. [6]Lee S, Lee K, De Cooman B C. Observation of the TWIP plus TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(6): 2356-2363. [7]王明明, 张晓妍, 肖亚茹, 等. 汽车用高强塑积钢关键研究进展之一:Q&P钢的研究进展[J]. 材料热处理学报, 2019, 40(6): 11-19. Wang Mingming, Zhang Xiaoyan, Xiao Yaru, et al. One of the key research progress in high-strength plastic-plastic steels for automobiles: Research progress in Q&P steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(6): 11-19. [8]董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [9]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [10]Shen Y F, Qiu L N, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels[J]. Materials Science and Engineering A, 2015, 636: 551-564. [11]De Moor E, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2): 185-188. [12]Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing[J]. Scripta Materialia, 2018, 154: 30-33. [13]Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels[J]. Acta Materialia, 2015, 95: 386-398. [14]Sun B, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions[J]. Materials Science and Engineering A, 2018, 729: 496-507. [15]Sun B, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels[J]. Acta Materialia, 2018, 148: 249-262. [16]Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity[J]. Metal Science Journal, 2014, 10(11): 964-970. [17]Liu L, He B, Huang M. The role of transformation-induced plasticity in the development of advanced high strength steels[J]. Advanced Engineering Materials, 2018, 20(6): 1701083. [18]赵彦乐, 邹宇明, 丁 桦. C含量对冷轧Fe-6Mn-1Al中锰钢组织与性能的影响[J]. 金属热处理, 2022, 47(2): 35-40. Zhao Yanle, Zou Yuming, Ding Hua. Effect of C content on microstructure and mechanical properties of cold-rolled Fe-6Mn-1Al medium manganese steel[J]. Heat Treatment of Metals, 2022, 47(2): 35-40. [19]Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite plus martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism[J]. Acta Materialia, 2018, 147: 247-260. [20]Jacques P, Furnemont Q, Mertens A, et al. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity[J]. Philosophical Magazine A, 2001, 81(7): 1789-1812. [21]Jeong K, Jin J E, Jung Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Materialia, 2013, 61(9): 3399-3410. [22]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering A, 2016, 673: 63-72. [23]Yi H L, Ghosh S K, Liu W J, et al. Non-equilibrium solidification and ferrite in δ-TRIP steel[J]. Materials Science and Technology, 2010, 26(7): 817-823. [24]Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel[J]. Scripta Materialia, 2013, 68(11): 865-868. [25]Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel[J]. Metallurgical and Materials Transactions A, 2010, 41A(2): 397-408. [26]Zhang Yongjian, Hui Weijun, Wang Jiaojiao, et al. Enhancing the mechanical properties of Al-containing medium Mn steel through warm rolling and intercritical annealing[J]. Steel Research International, 2019, 90(3): 1800412. [27]Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Materials Science and Engineering A, 2017, 688(14): 40-55. [28]Benzing J T, Kwiatkowski D S A, Morsdorf L, et al. Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel[J]. Acta Materialia, 2019, 166: 512-530. [29]Zhou T P, Wang C Y, Wang C, et al. Strong interactions between austenite and the matrix of medium-Mn steel during intercritical annealing[J]. Materials, 2020, 13(15): 3366. [30]Han J, Da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel[J]. Acta Materialia, 2017, 122: 199-206. [31]Chbihi A, Barbier D, Germain L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels[J]. Journal of Materials Science, 2014, 49(10): 3608-3621. [32]Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9wt.% medium Mn steel[J]. Acta Materialia, 2015, 86: 182-192. [33]Sun B, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite[J]. Acta Materialia, 2019, 164: 683-696. [34]Hu Z P, Xu Y B, Zou Y, et al. Effect of intercritical rolling temperature on microstructure-mechanical property relationship in a medium Mn-TRIP steel containing delta ferrite[J]. Materials Science & Engineering A, 2018, 720: 1-10. [35]He B B, Wang M, Huang M X. Resetting the austenite stability in a medium Mn steel via dislocation engineering[J]. Metallurgical and Materials Transactions A, 2019, 50(6): 2971-2977. [36]He B B, Liang Z Y, Huang M X. Nanoindentation investigation on the initiation of yield point phenomenon in a medium Mn steel[J]. Scripta Materialia, 2018, 150: 134-138. [37]Hu B, Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel[J]. Acta Materialia, 2019, 176: 250-263. [38]Luo H W, Qiu C H, Dong H, et al. Experimental and numerical analysis of influence of carbide on austenitisation kinetics in 5Mn TRIP steel[J]. Materials Science and Technology, 2014, 30(11): 1367-1377. [39]Luo H, Liu J, Dong H. A novel observation on cementite formed during intercritical annealing of medium Mn steel[J]. Metallurgical and Materials Transactions A, 2016, 47(6): 3119-3124. [40]Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0. 2C-8Mn-2Al medium Mn steel[J]. Acta Materialia, 2018, 147: 59-69. [41]白韶斌, 肖文涛, 牛伟强, 等. 退火和退火-时效工艺对热轧中锰钢组织及性能的影响[J]. 金属热处理, 2022, 47(1): 245-249. Bai Shaobin, Xiao Wentao, Niu Weiqiang, et al. Influence of annealing and annealing-aging process on microstructure and mechanical properties of hot-rolled medium manganese steel[J]. Heat Treatment of Metals, 2022, 47(1): 245-249. |