[1]Wei M, Zhu L, Luo F, et al. Share-soil interaction load and wear at various tillage conditions of a horizontally reversible plough[J]. Computers and Electronics in Agriculture, 2019, 162: 21-30. [2]雷智高, 郑 炫, 汤智辉, 等. 1LFT-555型液压翻转栅条犁的设计与试验[J]. 农机化研究, 2021, 43(2): 174-179. Lei Zhigao, Zheng Xuan, Tang Zhihui, et al. Design and test of 1LFT-555 hydraulic flip grid plow[J]. Journal of Agricultural Mechanization Research, 2021, 43(2): 174-179. [3]何兴村, 张鲁云, 郑 炫, 等. 栅条式液压翻转调幅犁设计与试验[J]. 中国农机化学报, 2020, 41(3): 35-39. He Xingcun, Zhang Luyun, Zheng Xuan, et al. Design and test on grille type hydraulic overturn and amplitude modulation plow[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(3): 35-39. [4]Zhang J W, Zhu L, Chen P, et al. Flowing interaction between cutting edge of plough breast with soil in shifting tillage operations[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 1404-1415. [5]Mattetti M, Varani M, Molari G, et al. Influence of the speed on soil-pressure over a plough[J]. Biosystems Engineering, 2017, 156: 136-147. [6]Hafeez M A. Microstructural and mechanical properties of one-step quenched and partitioned 65Mn steel[J]. Arabian Journal for Science and Engineering, 2021, 46: 2261-2267. [7]Wang Y, Sun J, Jiang T, et al. Super strength of 65Mn spring steel obtained by appropriate quenching and tempering in an ultrafine grain condition[J]. Materials Science and Engineering: A, 2019, 754: 1-8. [8]Zheng Y, Wang F, Li C, et al. Dissolution and precipitation behaviors of boron bearing phase and their effects on hardenability and toughness of 25CrMoNbB steel[J]. Materials Science and Engineering: A, 2017, 701: 45-55. [9]Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels[J]. Scripta Materialia, 2011, 64(12): 1118-1120. [10]赵培林, 刘 超, 吴会亮, 等. 正火温度对海工用355 MPa级厚规格型钢组织及低温韧性的影响[J]. 金属热处理, 2021, 46(6): 102-106. Zhao Peilin, Liu Chao, Wu Huiliang, et al. Effect of normalizing temperature on microstructure and low temperature toughness of 355 MPa heavy section steel for marine engineering[J]. Heat Treatment of Metals, 2021, 46(6): 102-106. [11]刘宗昌. 材料组织结构转变原理[M]. 北京: 冶金工业出版社, 2006: 100. [12]Wei S, Lu S. Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb[J]. Materials and Design, 2012, 35: 43-54. [13]Liu Y G, Li M Q. Characteristics of martensite transformed from deformed austenite with various states of ultrahigh strength 300M steel[J]. Materials Characterization, 2018, 144: 490-497. [14]徐祖耀. 低碳钢中的残余奥氏体[J]. 上海金属, 1995, 17(1): 1-6. Xu Zuyao. Retained austenite in low carbon steels[J]. Shanghai Metals, 1995, 17(1): 1-6. [15]Holzwarth U, Gibson N. The Scherrer equation versus ‘the Debye-Scherrer equation’[J]. Nature Nanotechnology, 2011, 6(9): 534. [16]Suikkanen P P, Cayron C, Deardo A J, et al. Crystallographic analysis of martensite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD[J]. Journal of Materials Science and Technology, 2011, 27(10): 920-930. [17]Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs[J]. Materials Science and Engineering A, 2019, 759: 430-436. [18]Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Journal of Materials Science and Technology, 2020, 51: 130-136. [19]Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society, Section B, 1951, 64(9): 747-753. [20]梁益龙, 雷 旻, 钟蜀辉, 等. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J]. 金属学报, 1998, 34(9): 950-958. Liang Yilong, Lei Min, Zhong Shuhui, et al. The relationship between fracture toughness and notch toughness, tensile ductilities in lath martensite steel[J]. Acta Metallrugica Sinica, 1998, 34(9): 950-958. |