[1]Sahai B. Engineering applications of remote sensing[J]. Journal of the Indian Society of Remote Sensing, 1989, 17(4): 1-8. [2]Funatani K. Emerging technology in surface modification of light metals[J]. Surface and Coatings Technology, 2000, 133-134: 264-272. [3]Wu Xiaolei. Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating[J]. Surface and Coatings Technology, 1999, 115(2/3): 153-162. [4]De Mol Van Otterloo J L, De Hosson J Th M. Microstructure and abrasive wear of cobalt-based laser coatings[J]. Scripta Materialia, 1997, 36(2): 239-245. [5]Pelletier J M, Sallamand P, Criqui B. Microstructure and mechanical properties of some metal matrix composites coatings by laser cladding[J]. Journal De Physique IV, 1994, 4: 93-96. [6]梁秀兵, 程江波, 徐滨士, 等. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12. Liang Xiubing, Cheng Jiangbo, Xu Binshi, et al. Research progress on Fe-based amorphous coatings[J]. Journal of Materials Engineering, 2017, 45(9): 1-12. [7]张 帅, 刘福朋, 戴万祥, 等. 镍基涂层耐磨损性耐腐蚀性的研究现状[J]. 热加工工艺, 2020, 49(10): 16-19. Zhang Shuai, Liu Fupeng, Dai Wanxiang, et al. Research status of wear resistance and corrosion resistance of nickel-based coatings[J]. Hot Working Technology, 2020, 49(10): 16-19. [8]Feng S Q, Guo F, Li J Y, et al. Theoretical investigations of physical stability, electronic properties and hardness of transition-metal tungsten borides WBx(x=2.5, 3)[J]. Chemical Physics Letters, 2015, 635: 205-209. [9]Sun Shibo, Wang Haibin, Liu Xuemei, et al. Outstanding anti-oxidation performance of boride coating under high-temperature friction[J]. Corrosion Science, 2020, 179: 109-133 [10]Torkamani A D, Velashjerdi M, Abbas A, et al. Electrodeposition of nickel matrix composite coatings via various boride particles: A review[J]. Journal of Composites and Compounds, 2021, 3(7): 106-113. [11]Sokeng I T, Ngom B D, Msimanga M, et al. Coatings synthesized by the pulsed laser ablation of a B4C/W2B5 ceramic composite[J]. Thin Solid Films, 2015, 593(10): 5-9. [12]Liu Y, Tian L, Chang J, et al. Effect of modulation ratio on structure and mechanical properties of WB2/CrN films deposited by direct-current magnetron sputtering[J]. Journal of Alloys and Compounds, 2020, 851: 156852. [13]Jiang C, Pei Z, Liu Y, et al. Preparation and characterization of superhard AlB2-type WB2nano-composite coatings[J]. Physica Status Solidi, 2013, 210(6): 1221-1227. [14]Qin M, Gild J, Wang H, et al. Dissolving and stabilizing soft WB2 and MoB2 phases into high-entropy borides via boron-metals reactive sintering to attain higher hardness[J]. Journal of the European Ceramic Society, 2020, 40(12): 4348-4353. [15]Fuger C, Schwartz B, Wojcik T, et al. Influence of Ta on the oxidation resistance of WB2-zcoatings[J]. Journal of Alloys and Compounds, 2021, 864: 158121 [16]Habig K H. 材料的磨损与硬度[M]. 严 立, 译. 北京: 机械工业出版社, 1987: 146-150. [17]Wang Q, Lu Y, Yu Q, et al. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi[J]. Scientific Reports, 2018, 8(1): 1-7. [18]Lugscheider E, Rwulf S, Barimani C. Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications[J]. Surface and Coatings Technology, 1999, 121(1): 458-464. [19]Zheng Haidong, Ou Jianzhen, Michael S, et al. Nanostructured tungsten oxide -Properties, synthesis, and applications[J]. Advanced Functional Materials, 2011, 21(12): 2175-2196. [20]熊党生, 李建亮. 高温摩擦磨损与润滑[M]. 西安: 西北工业大学出版社, 2013. 230-231. |