[1]王 葛, 朱国善, 高静娜, 等. 4130X钢大直径厚壁压力气瓶喷水淬火数值模拟[J]. 材料热处理学报, 2015, 36(7): 250-256. Wang Ge, Zhu Guoshan, Gao Jingna, et al. Numerical simulation of flow and temperature fields in spray quenching process of large-diameter thick-walled 4130X steel gas cylinder[J]. Transactions of Materials and Heat Treatment, 2015, 36(7): 250-256. [2]王 凯, 石 伟, 王 罡. 基于有限元模拟的换热系数计算方法[J]. 材料热处理学报, 2018, 39(10): 112-118, 132. Wang Kai, Shi Wei, Wang Gang. Calculation method of heat transfer coefficient based on finite element simulation[J]. Transactions of Materials and Heat Treatment, 2018, 39(10): 112-118, 132. [3]Alex Stéphane Bongo Njeng, Stéphane Vitu, Clausse Marc, et al. Wall-to-solid heat transfer coefficient in flighted rotary kilns: Experimental determination and modeling[J]. Experimental Thermal and Fluid Science, 2018, 91: 197-213. [4]Bouissa Y, Shahriari D, Champliaud H, et al. Prediction of heat transfer coefficient during quenching of large size forged blocks using modeling and experimental validation[J]. Case Studies in Thermal Engineering, 2019, 13: 100379. [5]Onyango T, Ingham D B, Lesnic D. Inverse reconstruction of boundary condition coefficients in one-dimensional transient heat conduction[J]. Applied Mathematics and Computation, 2009, 207(2): 569-575. [6]Maciejewska B, StraK K, Piasecka M. The solution of a two-dimensional inverse heat transfer problem using the Trefftz method[J]. Procedia Engineering, 2016, 157: 82-88. [7]顾剑锋, 潘健生, 胡明娟. 淬火冷却过程中表面综合换热系数的反传热分析[J]. 上海交通大学学报, 1998, 32(2): 19-22. Gu Jianfeng, Pan Jiansheng, Hu Mingjuan. Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process[J]. Journal of Shanghai Jiao Tong University, 1998, 32(2): 19-22. [8]徐 戎, 李落星. 介质流量密度对铝合金喷射淬火界面热交换率的影响规律及机理[J]. 金属热处理, 2022, 47(2): 243-249. Xu Rong, Li Luoxing. Influence law and mechanism of medium flow density on heat exchange rate of jet quenching interface of aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(2): 243-249. [9]徐 戎, 李落星, 王震虎. 铝合金水射流参数对淬火界面传热行为的影响[J]. 金属热处理, 2019, 44(8): 246-252. Xu Rong, Li Luoxing, Wang Zhenhu. Effect of water jet parameters on heat transfer behavior at quenching interface of aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(8): 246-252. [10]隋佳丽, 李新生, 肖桂勇, 等. 淬火介质表面换热系数的计算方法与应用[J]. 热加工工艺, 2023, 52(14): 137-141. Sui Jiali, Li Xinsheng, Xiao Guiyong, et al. Calculation method and application of surface heat transfer coefficient of quenching medium[J]. Hot Working Technology, 2023, 52(14): 137-141. [11]曹 瑞, 孙 会. 淬火过程数值模拟技术的研究进展[J]. 材料导报, 2015, 29(5): 140-144. Cao Rui, Sun Hui. Progress of research on numerical simulation of quenching process[J]. Materials Review, 2015, 29(5): 140-144. [12]牛山廷, 赵国群, 李辉平. 淬火冷却过程三维反传热有限元分析中优化方法对计算效率的影响[J]. 中国机械工程, 2006, 17(S1): 318-322. Niu Shanting, Zhao Guoqun, Li Huiping. Study on the influence of optimization methods on the computation efficiency in inverse heat conduction analysis with 3D FEM during quenching process[J]. China Mechanical Engineering, 2006, 17(S1): 318-322. [13]李自良, 王 利, 刘美红, 等. 雾化气体淬火过程换热系数的计算及实验研究[J]. 热加工工艺, 2016, 45(16): 203-207. Li Ziliang, Wang Li, Liu Meihong, et al. Calculation and experimental research of heat transfer coefficient in atomized gas quenching process[J]. Hot Working Technology, 2016, 45(16): 203-207. |