[1]Tekumalla Sravya, Tosi Riccardo, Tan Xipeng, et al. Directed energy deposition and characterization of high-speed steels with high vanadium content[J]. Additive Manufacturing Letters, 2022, 2: 100029. [2]彭翰林. 精冲模具用粉末冶金高速钢S390/S790的热处理规律研究[D]. 武汉: 华中科技大学, 2020. [3]赵顺利. 喷射成形高合金高速钢的组织与性能研究[D]. 上海: 上海大学, 2017. [4]王桂棠, 邓耀华, 吴黎明. 基于数字图像处理技术的金相组织定量分析[J]. 金属热处理, 2006, 31(2): 66-70. Wang Guitang, Deng Yaohua, Wu Liming. Metallographic quantitative analysis using digital image process[J]. Heat Treatment of Metals, 2006, 31(2): 66-70. [5]Hecht M D, Webler B A, Picard Y N. Digital image analysis to quantify carbide networks in ultrahigh carbon steels[J]. Materials Characterization, 2016, 117: 134-143. [6]Smeets S, Ångström J, Olsson C O A. Quantitative phase analysis for carbide characterization in steel using automated electron diffraction[J]Steel Research International, 2019, 90(1): 1-7. [7]张 吉. 基于面积直方图的碳化物不均匀度评级方法[D]. 广州: 广东工业大学, 2010. [8]单陇红. 基于数字图像的GCr15轴承钢中碳化物均匀性分析[D]. 兰州: 兰州理工大学, 2016. [9]Khan M Z, Gajendran M K, Lee Y, et al. Deep neural architectures for medical image semantic segmentation: Review[J]. IEEE Access, 2021, 9: 83002-83024. [10]Yu Hongshan, Yang Zhengeng, Tan Lei, et al. Methods and datasets on semantic segmentation: A review[J]. Neurocomputing, 2018, 304: 82-103. [11]Liu Z, Mao H, Wu C, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022: 11966-11976. [12]Vaswani A, Shazeer N M, Parmar N, et al. Attention is all you need[C]//Thirty-first Conference on Neural Information Processing Systems. 2017. [13]Xie S, Girshick R B, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//2017IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 5987-5995. [14]Sandler M, Howard A G, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//2018IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018: 4510-4520. [15]Zhao Z X, Chen K X, Yamane S. CBAM-Unet++: Easier to find the target with the attention module "CBAM"[C]//2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). 2021: 655-657. [16]柴 铮, 汪嘉业, 赵春晖, 等. 面向工业监控典型监督任务的深度迁移学习方法: 现状、挑战与展望[J]. 中国科学: 信息科学, 2023, 53(5): 821-840. |