金属热处理 ›› 2023, Vol. 48 ›› Issue (10): 87-93.DOI: 10.13251/j.issn.0254-6051.2023.10.012

• 特约专栏 • 上一篇    下一篇

基于改进U-Net的喷射成形高速钢碳化物提取算法

陈家树1, 侯国栋2, 周继宽3, 刘天琪1, 邓百川1, 张祥林1   

  1. 1.华中科技大学 材料科学与工程学院, 湖北 武汉 430074;
    2.河冶科技股份有限公司, 河北 石家庄 052165;
    3.湖北会盛百模具材料科技有限公司, 湖北 武汉 430080
  • 收稿日期:2023-06-08 修回日期:2023-09-02 出版日期:2023-10-25 发布日期:2023-12-07
  • 通讯作者: 张祥林,教授,博士生导师,E-mail:hust_zxl@mail.hust.edu.cn
  • 作者简介:陈家树(1999—),男,硕士研究生,主要研究方向为高速钢热处理、金相定量分析及图像处理,E-mail:307989110@qq.com。

An improved U-Net algorithm for extracting carbides from spray formed high speed steel

Chen Jiashu1, Hou Guodong2, Zhou Jikuan3, Liu Tianqi1, Deng Baichuan1, Zhang Xianglin1   

  1. 1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan Hubei 430074, China;
    2. Heye Special Steel Co., Ltd., Shijiazhuang Hebei 052165, China;
    3. Hubei Huishengbai Mold Material Technology Co., Ltd., Wuhan Hubei 430080, China
  • Received:2023-06-08 Revised:2023-09-02 Online:2023-10-25 Published:2023-12-07

摘要: 针对当前利用数字图像处理算法及深度学习模型对钢中碳化物进行定量分析时,存在准确率低、提取效果不佳导致的分析误差较大等问题,提出一种基于U-Net改进的喷射成形高速钢碳化物分割算法GSG-Unet,旨在对钢中不同种类的碳化物进行准确高效地分割提取,以便进行自动化定量分析。通过添加ConvNeXt模块和CBAM注意力机制加强了模型的特征提取能力和处理漏检问题能力,使分割效果有显著提升。结果表明,改进后模型的准确率、召回率、类平均交并比和骰子系数分别为91.31%、87.52%、84.89%和83.16%,较原模型有较大提升。该模型能够精准地将MC碳化物和M6C碳化物从马氏体基体上进行分割,为快速准确地进行高速钢中碳化物的自动化定量分析提供了有力技术支持。

关键词: 高速钢, 碳化物, 自动化定量分析, 深度学习, 语义分割

Abstract: To address the issues of low accuracy, poor extraction effect, and large analysis errors caused by using digital image processing algorithms and deep learning models for quantitative analysis of carbides in steel, a modified jet forming high speed steel carbides segmentation algorithm based on U-Net (GSG-Unet) was proposed. The aim is to accurately and efficiently segment and extract different types of carbides in steel for automated quantitative analysis. The model is strengthened by adding ConvNext module and CBAM attention mechanism to enhance its feature extraction capability and ability to handle missed detections, resulting in significant improvement in segmentation performance. The results show that the improved model has an accuracy of 91.31%, recall rate of 87.52%, class-average intersection over union of 84.89%, and Dice of 83.16%, which are significantly higher than those of the original model. This improved model can accurately segment MC and M6C carbides from martensite matrix, providing strong technical support for rapid and accurate automated quantitative analysis of carbides in high speed steel.

Key words: high speed steel, carbides, automated quantitative analysis, deep learning, semantic segmentation

中图分类号: