[1]Wang W, Liu H J, Zhou C C, et al. Evaluation of contact fatigue life of a wind turbine carburized gear considering gradients of mechanical properties[J]. International Journal of Damage Mechanics, 2019, 28(8): 1170-1190. [2]李纪强, 朱博强, 刘忠明, 等. 齿轮传动微点蚀与热胶合竞争性失效机制研究[J]. 摩擦学学报, 2021, 41(5): 636-646. Li Jiqiang, Zhu Boqiang, Liu Zhongming, et al. Competitive failure mechanism of micro-pitting and thermal-scuffing in gear transmission[J]. Tribology, 2021, 41(5): 636-646. [3]Seo J W, Kim J, Kwon S J, et al. Effects of laser cladding for repairing and improving wear of rails[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(7): 1207-1217. [4]Tabernero I, Lamikiz A, Martinez S, et al. Evaluation of the mechanical properties of Inconel 718 components built by laser cladding[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 465-470. [5]练国富, 姚明浦, 陈昌荣, 等. 激光熔覆多道搭接成形质量与效率控制方法[J]. 表面技术, 2018, 47(9): 229-239. Lian Guofu, Yao Mingpu, Chen Changrong, et al. Control of the quality and efficiency of multi-track overlapping laser cladding[J]. Surface Technology, 2018, 47(9): 229-239. [6]雷靖峰, 祁文军, 谢亚东, 等. U71Mn钢表面激光熔覆Ni60-25%WC涂层工艺参数优化的研究[J]. 表面技术, 2018, 47(3): 66-71. Lei Jingfeng, Qi Wenjun, Xie Yadong, et al. Optimization of process parameters of laser cladding Ni60-25%WC coating on U71Mn steel[J]. Surface Technology, 2018, 47(3): 66-71. [7]Chen L Y, Zhao Y, Chen X, et al. Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating: Process, microstructure and properties[J]. Ceramics International, 2021, 47: 30113-30128. [8]何力佳, 赵晓杰, 王 函, 等. 45号钢基体光纤激光熔覆镍基合金的组织与性能[J]. 特种铸造及有色合金, 2015, 35(9): 909-912. He Lijia, Zhao Xiaojie, Wang Han, et al. Microstructure and properties of nickel-based alloy powder laser cladding on 45 steel substrate[J]. Special Casting and Nonferrous Alloys, 2015, 35(9): 909-912. [9]曾大文, 夏 辉, 谢长生. Ni基合金激光熔覆层组织特征及凝固过程的研究[J]. 稀有金属材料与工程, 2000, 29(2): 109-113. Zeng Dawen, Xia Hui, Xie Changsheng. Microstructure and solidification process of the laser clad Ni alloy[J]. Rare Metal Materials and Engineering, 2000, 29(2): 109-113. [10]徐子法, 焦俊科, 张 正, 等. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(10): 3196-3202. Xu Zifa, Jiao Junke, Zhang Zheng, et al. Research on laser repair process of Ni-based superalloy[J]. Materials Reports, 2019, 33(10): 3196-3202. [11]Shi J, Bai S Q. Research on gear repairing technology by laser cladding[J]. Key Engineering Materials, 2013, 546: 40-44. [12]Erfanmanesh M, Pour H, Semnani H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics and Laser Technology, 2017, 97: 180-186. [13]赵 尧, 虞 钢, 何秀丽, 等. 基于主成分分析法与逼近理想解法的38MnVS6激光熔覆工艺研究[J]. 兵工学报, 2019, 40(12): 2537-2544. Zhao Yao, Yu Gang, He Xiuli, et al. Research on laser cladding processing for 38MnVS6 by PCA-TOPSIS method[J]. Acta Armamentarii, 2019, 40(12): 2537-2544. [14]曹永青, 林 鑫, 汪志太, 等. 激光快速熔凝Ni-Sn共晶合金的组织演变[J]. 金属学报, 2011, 47(5): 540-547. Cao Yongqing, Lin Xin, Wang Zhitai, et al. Microstructure evolution of Ni-Sn eutectic alloy in laser rapid solidification[J]. Acta Metallurgica Sinica, 2011, 47(5): 540-547. [15]Jsa B, Gang Y, Xha B, et al. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy[J]. Optics and Laser Technology, 2019, 119: 105662. [16]Zhou S F, Huang Y J, Zeng X Y, et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding[J]. Materials Science and Engineering A, 2008, 480: 564-572. [17]黄凤晓, 江中浩, 陈 莉. Nb对送粉激光熔覆层组织和性能的影响[J]. 金属热处理, 2007, 32(4): 45-48. Huang Fengxiao, Jiang Zhonghao, Chen Li. Effect of niobium on microstructure and properties of coating formed by powder feeding laser cladding[J]. Heat Treatment of Metals, 2007, 32(4): 45-48. |