金属热处理 ›› 2023, Vol. 48 ›› Issue (12): 44-55.DOI: 10.13251/j.issn.0254-6051.2023.12.007
王海军1, 牛宇豪1, 乔家龙1,2, 凌海涛1, 仇圣桃1,2
收稿日期:
2023-09-28
修回日期:
2023-11-05
出版日期:
2023-12-25
发布日期:
2024-01-29
通讯作者:
仇圣桃,正高级工程师,博士,E-mail: qiust@vip.163.com
作者简介:
王海军(1988—),男,副教授,博士,主要研究方向为高效电工钢及连铸新技术开发,E-mail:whjchina@yeah.net。
基金资助:
Wang Haijun1, Niu Yuhao1, Qiao Jialong1,2, Ling Haitao1, Qiu Shengtao1,2
Received:
2023-09-28
Revised:
2023-11-05
Online:
2023-12-25
Published:
2024-01-29
摘要: 围绕无取向硅钢的退火工艺展开叙述,综述了近20年国内外学者在退火温度、退火时间、加热速率、退火气氛方面对无取向硅钢晶粒尺寸和织构强度影响的研究工作;对比分析了退火热处理前后冷轧板组织与织构演变过程存在的差异,并对目前无取向硅钢退火过程中晶粒、织构的演变特征进行归纳总结。
中图分类号:
王海军, 牛宇豪, 乔家龙, 凌海涛, 仇圣桃. 退火工艺对无取向硅钢晶粒尺寸和织构强度的影响[J]. 金属热处理, 2023, 48(12): 44-55.
Wang Haijun, Niu Yuhao, Qiao Jialong, Ling Haitao, Qiu Shengtao. Effect of annealing process on grain size and texture intensity of non-oriented silicon steel[J]. Heat Treatment of Metals, 2023, 48(12): 44-55.
[1]陈 卓. “双碳”大背景下的中国电工钢走势[J]. 电工钢, 2022, 4(1): 1-4. Chen Zhuo. Trend of China's electrical steel under the background of carbon peak and carbon neutralization[J]. Electrical Steel, 2022, 4(1): 1-4. [2]龚 坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43(6): 102-112. Gong Jian, Luo Haiwen. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. Journal of Materials Engineering, 2015, 43(6): 102-112. [3]岳重祥, 江 毅, 倪卫锋, 等. 国内无取向硅钢未来十五年需求预测与发展建议[J]. 电工钢, 2021, 3(5): 37-41. Yue Chongxiang, Jiang Yi, Ni Weifeng, et al. Demand forecast and development suggestion of domestic non-oriented silicon steel in the next 15 years[J]. Electrical Steel, 2021, 3(5): 37-41. [4]Cunha M A, Paolinelli S C. Low core loss non-oriented silicon steels[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(20): 2485-2489. [5]Paolinelli S C, Cunha M A. Development of a new generation of high permeability non-oriented silicon steels[J]. Journal of Magnetism and Magnetic Materials, 2006, 304(2): e596-e598. [6]何忠治. 电工钢[M]. 北京: 冶金工业出版社, 2012. [7]朱诚意, 鲍远凯, 汪 勇, 等. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 89-96. Zhu Chengyi, Bao Yuankai, Wang Yong, et al. Research progress on application status and property control of non-oriented silicon steel for traction motor of new energy vehicles[J]. Materials Reports, 2021, 35(23): 89-96. [8]郭海荣, 李化龙. 退火工艺对1.8%Si冷轧无取向硅钢组织与磁性能的影响[J]. 热加工工艺, 2016, 45(16): 181-185, 189. Guo Hairong, Li Hualong. Influences of annealing process on microstructures and magnetic properties of 1.8%Si non-oriented silicon steel[J]. Hot Working Technology, 2016, 45(16): 181-185, 189. [9]Godec M, Jenko M, Grabke H J, et al. Sn segregation and its influence on electrical steel texture development[J]. ISIJ International, 1999, 39(7): 742-746. [10]褚绍阳, 干 勇, 仇圣桃, 等. 锡或锑在无取向电工钢中的研究进展[J]. 中国冶金, 2022, 32(5): 1-6. Chu Shaoyang, Gan Yong, Qiu Shengtao, et al. Research progress of tin or antimony in non-oriented electrical steel[J]. China Metallurgy, 2022, 32(5): 1-6. [11]Chang S K. Magnetic anisotropies and textures in high-alloyed non-oriented electrical steels[J]. ISIJ International, 2007, 47(3): 466-471. [12]朱诚意, 黄罗翼, 罗小燕, 等. 钙处理对成品无取向硅钢夹杂物特性的影响[J]. 钢铁研究学报, 2020, 32(2): 117-128. Zhu Chengyi, Huang Luoyi, Luo Xiaoyan, et al. Effect of calcium treatment on characteristics of inclusions in finished non-oriented silicon steel[J]. Journal of Iron and Steel Research, 2020, 32(2): 117-128. [13]Hou C K, Liao C C. Effect of cerium content on the magnetic properties of non-oriented electrical steels[J]. ISIJ International, 2008, 48(4): 531-539. [14]李 娜, 陆勤阳, 王永强, 等. Ce对2.9%Si-0.8%Al无取向硅钢夹杂物变质的影响[J]. 钢铁研究学报, 2017, 29(7): 570-576. Li Na, Lu Qinyang, Wang Yongqiang, et al. Effect of Ce on inclusions modification in 2.9%Si-0.8%Al non-oriented electrical steel[J]. Journal of Iron and Steel Research, 2017, 29(7): 570-576. [15]郭艳永, 蔡开科, 骆忠汉, 等. 钙处理对冷轧无取向硅钢磁性的影响[J]. 北京科技大学学报, 2005(4): 427-430, 452. Guo Yanyong, Cai Kaike, Luo Zhonghan, et al. Behavior of microinclusions in cold-rolled non-oriented silicon steel[J]. Journal of University of Science and Technology Beijing, 2005(4): 427-430, 452. [16]王 荃, 张文康, 林 媛, 等. 锰和锑对无取向硅钢组织性能的影响[J]. 热加工工艺, 2014, 43(20): 44-46, 50. Wang Quan, Zhang Wenkang, Lin Yuan, et al. Effects of Mn and Sb on microstructure and properties of non-oriented silicon steel[J]. Hot Working Technology, 2014, 43(20): 44-46, 50. [17]Hou C K. Effect of hot band annealing temperature on the magnetic properties of low-carbon electrical steels[J]. ISIJ International, 1996, 36(5): 563-571. [18]金自力, 任慧平, 张红杰. 无取向硅钢退火织构的演变与磁性能关系的研究[J]. 材料热处理学报, 2007, 8(2): 77-80. Jin Zili, Ren Huiping, Zhang Hongjie. Relation between evolution of annealing texture and magnetic property of non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2007, 8(2): 77-80. [19]Park J T, Kim J K, Szpunar J A. Recrystallisation, grain growth and texture evolution in non-oriented electrical steels[J]. Materials Science Forum, 2007, 558-559: 657-664. [20]李德超, 董俊慧, 陈海鹏, 等. 退火张力对无取向硅钢再结晶织构和磁性能的影响[J]. 材料导报, 2017, 31(2): 92-95. Li Dechao, Dong Junhui, Chen Haipeng, et al. Influences of annealing tension on recrystallization texture and magnetic properties of non-oriented silicon steel[J]. Materials Reports, 2017, 31(2): 92-95. [21]Saxena A, Chaudhuri S K. Correlating the aluminum content with ferrite grain size and core loss in non-oriented electrical steel[J]. ISIJ International, 2004, 44(7): 1273-1275. [22]匡元辉, 李建军, 岳尔斌, 等. 退火对TSCR生产低碳低硅无取向硅钢的影响[J]. 钢铁钒钛, 2010, 31(3): 25-29, 49. Kuang Yuanhui, Li Jianjun, Yue Erbin, et al. Effect of annealing on low-carbon and low-silicon non-oriented silicon steel produced by TSCR[J]. Iron Steel Vanadium Titanium, 2010, 31(3): 25-29, 49. [23]杨 健, 李婷婷. 稀土处理的无取向硅钢夹杂物控制研究进展[J]. 钢铁, 2022, 57(7): 1-15. Yang Jian, Li Tingting. Research progress on inclusion control of non-oriented silicon steel with REM treatment[J]. Iron & Steel, 2022, 57(7): 1-15. [24]彭 凯. 冷轧方式及退火温度对50W470硅钢组织, 织构及磁性能的影响研究[D]. 江西: 江西理工大学, 2016. [25]武晓龙, 杨 平, 顾新福, 等. 常化处理对50W800电工钢组织、织构与磁性的影响[J]. 电工钢, 2019, 1(1): 29-36. Wu Xiaolong, Yang Ping, Gu Xinfu, et al. Effects of normalizing treatment on microstructure, texture and magnetic properties of 50W800 electrical steel[J]. Electrical Steel, 2019, 1(1): 29-36. [26]Dorothée, Dorner. Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal[J]. Acta Materialia, 2007, 55(7): 2519-2530. [27]Abe H, Matsuo M, Ito K. Cold rolling and recrystallization textures of silicon-iron crystals rolled in (100)[001]orientation[J]. Transactions of the Japan Institute of Metals, 1963, 4(1): 28-32. [28]Cheng L, Zhang N, Yang P, et al. Retaining {100} texture from initial columnar grains in electrical steels[J]. Scripta Materialia, 2012, 67(11): 899-902. [29]Park J T, Szpunar J A. Evolution of recrystallization texture in non-oriented electrical steels[J]. Acta Materialia, 2003, 51(11): 3037-3051. [30]Chang S K. Texture effects on magnetic properties in high-alloyed non-oriented electrical steels[J]. Metal Science and Heat Treatment, 2007, 49(11-12): 569-573. [31]汪 勇, 朱诚意, Jürgen S, 等. 常化和退火温度对2.4%Si冷轧无取向硅钢组织和织构的影响[C]//2017第14届中国电工钢学术年会论文集. 宁波, 中国金属学会, 2017: 89-96. [32]Li N, Ma L, Xiang L, et al. Evolution of texture in a 2.8%Si non-oriented electrical steel annealed at 1100℃[J]. Materials Transactions, 2014, 55(2): 387-390. [33]张 婷, 张晓明, 郭志元, 等. 退火温度对双辊连铸无取向硅钢组织的影响[J]. 金属热处理, 2013, 38(3): 61-64. Zhang Ting, Zhang Xiaoming, Guo Zhiyuan, et al. Effect of annealing temperature on the recrystallized microstructure of non-oriented electrical steel produced by twin-roll casting process[J]. Heat Treatment of Metals, 2013, 38(3): 61-64. [34]张兴海, 杨 超, 贾宝瑞, 等. 退火温度对双辊薄带连铸高强度无取向硅钢组织和性能的影响[J]. 钢铁研究学报, 2020, 32(11): 1000-1005. Zhang Xinghai, Yang Chao, Jia Baorui, et al. Effect of annealing temperature on microstructure and properties of high strength non-oriented silicon steel produced by twin-roll casting process[J]. Journal of Iron and Steel Research, 2020, 32(11): 1000-1005. [35]彭 雄, 张晓明, 肖 亚, 等. 退火时间对双辊薄带连铸3%Si无取向硅钢再结晶组织、织构及磁性能的影响[C]//2014年全国轧钢生产技术会议文集(上). 无锡, 中国金属学会, 2014: 434-440. [36]马 良, 项 利, 仇圣桃, 等. 双辊薄带连铸3. 98%Si-0. 71%Al无取向硅钢的组织、织构和磁性能[J]. 机械工程材料, 2014, 38(1): 47-51. Ma Liang, Xiang Li, Qiu Shengtao, et al. Microstructure, texture and magnetic properties of 3.98%Si-0.71%Al non-oriented silicon steel prepared by twin-roll thin strip continuous casting[J]. Materials for Mechanical Engineering, 2014, 38(1): 47-51. [37]陈永利, 周雪娇, 索 粮, 等. 退火工艺对1.26%Si无取向硅钢组织性能的影响规律[J]. 热加工工艺, 2016, 45(14): 218-222. Chen Yongli, Zhou Xuejiao, Suo Liang, et al. Effects laws of annealing process on microstructure and properties of 1.26%Si non-oriented silicon steel[J]. Hot Working Technology, 2016, 45(14): 218-222. [38]孙 强, 李志超, 米振莉, 等. 退火温度对无取向硅钢再结晶行为的影响[J]. 材料热处理学报, 2016, 37(3): 58-62. Sun Qiang, Li Zhichao, Mi Zhenli, et al. Influence of annealing temperature on recrystallization behavior of a non-oriented electrical steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 58-62. [39]Mehdi M, He Y, Hilinski E J, et al. Texture evolution of a 2.8wt%Si non-oriented electrical steel during hot band annealing[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing 2018, 375(1): 012014. [40]Fan L F, Li S, Xiao L J, et al. Study on microstructure and texture of a new-type low Si high Mn non-oriented silicon steel 50W250[J]. Metallurgical Research and Technology, 2019, 116(6): 632-639. [41]张兴海, 杨 超. 退火时间对双辊薄带连铸无取向硅钢组织结构和性能的影响[J]. 金属功能材料, 2020, 27(6): 62-65. Zhang Xinghai, Yang Chao. Effect of annealing time on microstructure and properties of non-oriented silicon steel produced by twin-roll casting process[J]. Metallic Functional Materials, 2020, 27(6): 62-65. [42]李兆振, 宋新莉, 刘 静, 等. 铬、锰及退火温度对无取向硅钢组织性能影响[J]. 钢铁, 2020, 55(5): 80-86, 102. Li Zhaozhen, Song Xinli, Liu Jing, et al. Effect of Cr, Mn and annealing temperature on properties of non-oriented silicon steel[J]. Iron and Steel, 2020, 55(5): 80-86, 102. [43]于 雷, 罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300. Yu Lei, Luo Haiwen. Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel[J]. Acta Metallurgica Sinica, 2020, 56(3): 291-300. [44]刘青松, 裴英豪, 施立发, 等. 退火温度对3.0%Si冷轧无取向硅钢组织及性能的影响[J]. 电工钢, 2022, 4(2): 9-13. Liu Qingsong, Pei Yinghao, Shi Lifa, et al. Effect of annealing temperature on microstructure and properties of 3.0%Si cold rolled non-oriented silicon steel[J]. Electrical Steel, 2022, 4(2): 9-13. [45]谭 玄, 袁童欣, 尤学文, 等. 退火温度对3.1Si-0.8Al-1.3Mn高强无取向硅钢组织与性能的影响[J]. 材料热处理学报, 2022, 43(10): 136-144. Tan Xuan, Yuan Tongxin, You Xuewen, et al. Effect of annealing temperature on microstructure and properties of 3.1Si-0.8Al-1.3Mn high strength non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(10): 136-144. [46]黄 俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384. Huang Jun, Luo Haiwen. Influence of annealing process on microstructures, mechanical and magnetic properties of Nb-containing high-strength non-oriented silicon steel[J]. Acta Metallurgica Sinica, 2018, 54(3): 377-384. [47]张文儒. 退火温度和铬元素对电工钢组织和性能的影响[J]. 热加工工艺, 2017, 46(12): 222-224. Zhang Wenru. Effect of annealing temperature and Cr element on microstructure and properties of electrical steel[J]. Hot Working Technology, 2017, 46(12): 222-224. [48]张兴海, 杨 超, 张立生. Ni添加对双辊薄带连铸无取向硅钢组织和性能的影响[J]. 热加工工艺, 2022, 51(14): 145-148. Zhang Xinghai, Yang Chao, Zhang Lisheng. Effects of Ni addition on microstructure and properties of non-oriented silicon steels by twin-roll casting process[J]. Hot Working Technology, 2022, 51(14): 145-148. [49]孔祥兵, 任慧平, 金自力, 等. 退火温度对新能源汽车用含Ce无取向电工钢组织和织构的影响[J]. 金属热处理, 2021, 46(2): 149-153. Kong Xiangbing, Ren Huiping, Jin Zili, et al. Effect of annealing temperature on microstructure and texture of Ce-bearing non-oriented electrical steel for new energy automobiles[J]. Heat Treatment of Metals, 2021, 46(2): 149-153. [50]陈丽丽. 退火温度和时间对稀土处理无取向硅钢组织和综合磁性能的影响[J]. 上海金属, 2017, 39(3): 40-44, 50. Chen Lili. Effect of annealing temperature and time on microstructure and integrative magnetic properties of non-oriented silicon steel treated with RE alloy[J]. Shanghai Metals, 2017, 39(3): 40-44, 50. [51]Wang J, Li J, Wang X F, et al. Effect of heating rate on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel[J]. Journal of Iron and Steel Research, 2010, 17(11): 54-61. [52]Wu S Y, Lin C H, Hsu W C, et al. Effect of heating rate on the development of annealing texture in a 1.09wt.%Si non-oriented electrical steel[J]. ISIJ International, 2016, 56(2): 326-334. [53]Bae B K, Woo J S, Kim J K. Effect of heating rate on properties of non-oriented electrical steel containing 0.4%Si[J]. Journal of Magnetism and Magnetic Materials, 2003, 254: 373-375. [54]Gutiérrez C E, Salinas-Rodríguez A, Nava-Vázquez E. Effect offast annealing on microstructure and mechanical properties of non-oriented Al-Si low C electrical steels[C]//Materials Science Forum. Trans Tech Publications Ltd, 2007, 560: 29-34. [55]Li M, Xiao Y, Wang W, et al. Effect of annealing parameter on microstructure and magnetic properties of cold rolled non-oriented electrical steel[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(s1A): 74-78. [56]夏冬生, 杨 平, 谢 利, 等. 升温速率对低碳无取向电工钢脱碳退火组织及织构的影响[J]. 金属学报, 2014, 50(12): 1437-1445. Xia Dongsheng, Yang Ping, Xie Li, et al. Influence of heating rate on the decarburized annealing microstructure and texture in low-caron non-oriented electrical steel[J]. Acta Metallurgica Sinica, 2014, 50(12): 1437-1445. [57]Fang F, Xu Y B, Zhang Y X, et al. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels[J]. Journal of Magnetism and Magnetic Materials, 2015, 381: 433-439. [58]苏志贺, 金自力, 吴忠旺, 等. 罩式退火工艺的升温速率对无取向硅钢织构及性能的影响[J]. 金属热处理, 2022, 47(10): 124-128. Su Zhihe, Jin Zili, Wu Zhongwang, et al. Influence of heating rate of bell annealing process on texture and properties of non-oriented silicon steel[J]. Heat Treatment of Metals, 2022, 47(10): 124-128. [59]Park J T, Szpunar J A, Cha S Y. Effect of heating rate on the development of annealing texture in non-oriented electrical steels[J]. Transactions of the Iron and Steel Institute of Japan, 2007, 43(10): 1611-1614. [60]卢凤喜, 何 敏. 高牌号无取向电工钢生产技术[J]. 武钢技术, 2006, 44(6): 13-16. Lu Fengxi, He Min. Production techniques of high-grade non-oriented electromagnetic steel sheet[J]. Electrical Steel, 2006, 44(6): 13-16. [61]Paolinelli S C, Cunha M A. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2006, 304(2): 599-601. [62]贾维平, 薛 宁, 李国峰. 气氛热处理对无取向硅钢组织及织构的影响[J]. 电子显微学报, 2010, 29(1): 55-58. Jia Weiping, Xue Ning, Li Guofeng. Effect of atmosphere heat treatment on microstructures and texture of non-oriented silicon steel[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(1): 55-58. [63]Xie L, Yang P, Xia D, et al. Microstructure and texture evolution in a non-oriented electrical steel during γ→ α transformation under various atmosphere conditions[J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 655-662. [64]Park J S, Park J T. Effect of stress relief annealing temperature and atmosphere on the microstructure and magnetic properties of non-oriented electrical steels[C]//2016 6th International Electric Drives Production Conference (EDPC). IEEE, 2016: 288-292. [65]王 健, 李 俊, 郭文渊, 等. 冷轧无取向硅钢再结晶退火组织和织构演变研究进展[J]. 材料导报, 2010, 24(19): 100-103, 111. Wang Jian, Li Jun, Guo Wenyuan, et al. Progress in evolution of structure and texture during annealing in cold rolled non-oriented silicon steels[J]. Materials Reports, 2010, 24(19): 100-103, 111. [66]Lee H H, Jung J, Yoon J I, et al. Modelling the evolution of recrystallization texture for a non-grain oriented electrical steel[J]. Computational Materials Science, 2018, 149: 57-64. [67]Park J T, Szpunar J A. Texture development during grain growth in non-oriented electrical steels[J]. ISIJ International, 2005, 45(5): 743-749. [68]Landgraf F, Yonamine T, Takanohashi R, et al. Magnetic properties of silicon steel with as-cast columnar structure[J]. Journal of Magnetism and Magnetic Materials, 2003, 254: 364-366. |
[1] | 陈燕蕊, 吕科, 李岩, 任少卿, 赵明静, 董瑞, 定巍. 烧结温度对2∶17H型高性能SmCo合金微观结构和磁性能的影响[J]. 金属热处理, 2023, 48(9): 35-41. |
[2] | 曾勇谋, 刘莹, 刘梓源, 胡梦晗, 曹宇. 退火温度和冷变形量对动力电池壳用3003铝合金板组织和性能的影响[J]. 金属热处理, 2023, 48(9): 70-74. |
[3] | 韩伟松, 杜峰, 李建锋, 朱宝辉, 沈立华, 刘意, 王鹏. 变形量对Ti80G合金力学性能的影响[J]. 金属热处理, 2023, 48(9): 95-98. |
[4] | 黄元春, 马尚坤, 刘宇, 严积珺, 吴镇力. Gd含量对3003铝合金微观组织及导电率的影响[J]. 金属热处理, 2023, 48(9): 129-135. |
[5] | 谢尚恒, 孙有平, 朱嘉欣, 方德俊. 微量Zr对深冷轧制Al-Cu-Mg合金微观组织及性能的影响[J]. 金属热处理, 2023, 48(9): 174-179. |
[6] | 刘永珍, 董丽丽, 刘宝志, 张浩, 麻永林. 3.1%Si取向硅钢显微组织和宏观织构演变[J]. 金属热处理, 2023, 48(9): 238-241. |
[7] | 申文竹, 王朋飞, 胡相平, 包菲菲, 侯鑫鑫, 曹立胜. IF钢冷轧和退火过程的织构演变规律[J]. 金属热处理, 2023, 48(9): 242-246. |
[8] | 刘绪玮, 汪志刚, 林杰, 尹铁淇, 叶洁云, 张迎晖. 临界区淬火工艺对Cr-Ti-B系微碳钢组织及织构的影响[J]. 金属热处理, 2023, 48(8): 72-79. |
[9] | 康聪, 焦振, 穆博涛, 任驰强, 高文超, 李维, 贠鹏飞, 欧阳文博. 退火处理对Ti6321合金显微组织与力学性能的影响[J]. 金属热处理, 2023, 48(8): 149-153. |
[10] | 周泽宇, 韩明明, 肖翔, 付金来. 退火工艺对7X50铝合金丝材组织与自然时效性能的影响[J]. 金属热处理, 2023, 48(8): 161-165. |
[11] | 郑冰, 徐东, 王怡群, 王学玺, 赵红阳, 巨东英. 34CrNi3MoV钢奥氏体晶粒分布规律[J]. 金属热处理, 2023, 48(7): 1-7. |
[12] | 刘磊, 郭飞虎, 时朋召, 乔家龙, 仇圣桃. 初次再结晶退火温度对低温Hi-B钢组织和织构的影响[J]. 金属热处理, 2023, 48(7): 8-14. |
[13] | 黄伟丽, 李红斌, 王杏娟, 陈连生, 田亚强, 牛跃威, 陈四平. MnS夹杂形态对冷轧退火Ti微合金钢延伸率的影响[J]. 金属热处理, 2023, 48(7): 73-78. |
[14] | 王军亮, 周铁柱, 付利国, 郁炎, 李春辉. 去应力退火对B10铜镍合金厚壁三通表面残余应力及组织性能的影响[J]. 金属热处理, 2023, 48(7): 111-116. |
[15] | 李世文, 熊伟, 张文亮, 王超, 高占勇. 20Si2Mn2CrNi钢锻后晶粒细化及强韧性提升工艺[J]. 金属热处理, 2023, 48(7): 157-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn