[1]巢昺轩, 蒋克全, 王宝龙. 1Cr17Ni2马氏体不锈钢钣金零件抗腐蚀性能工艺研究[J]. 热加工工艺, 2022,51(10): 141-144. Chao Bingxun, Jiang Kequan, Wang Baolong. Study on corrosion resistance of 1Cr17Ni2 martensitic stainless steel sheet metal parts[J]. Hot Working Technology, 2022, 51(10): 141-144. [2]马涛涛. 1Cr17Ni2钢的热处理工艺研究[J]. 特钢技术, 2011, 17(3): 32-34. Ma Taotao. Study on heat treatment process of 1Cr17Ni2 steel[J]. Special Steel Technology, 2011, 17(3): 32-34. [3]Yang X, Zhang L, Zhang S, et al. Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments[J]. International Journal of Electrochemical Science, 2021, 16(1): 1-17. [4]夏书敏, 刘超英, 张贞明. 淬火与回火间的时效对1Cr17Ni2 钢组织及屈服强度的影响[J]. 金属热处理, 2002, 27(7): 24-26. Xia Shumin, Liu Chaoying, Zhang Zhenming. Effect of aging treatment between quenching and tempering on microstructure and yield strength of 1Cr17Ni2 steel[J]. Heat Treatment of Metals, 2002, 27(7): 24-26. [5]钱才让, 王海龙, 左 辉, 等. 1Cr17Ni2马氏体不锈钢的热塑性[J]. 金属热处理, 2019, 44(12): 75-78. Qian Cairang, Wang Hailong, Zuo Hui, et al. Thermo plasticity of 1Cr17Ni2 martensitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(12): 75-78. [6]Zheng Yi, Li Ning, Yan Jiazhen, et al . The microstructure and mechanical properties of 1Cr17Ni2/QAl7 brazed joints using Cu-Mn-Ni-Ag brazing alloy[J]. Materials Science and Engineering A, 2016, 20(7): 25-31. [7]王冬颖, 关 锰, 陈 炜, 等. 基于V型缺口试样冲击性能确定1Cr17Ni2不锈钢的热处理工艺[J]. 机械工程材料, 2016, 40(8): 34-38. Wang Dongying, Guan Meng, Chen Wei, et al. Heat treatment process determination of 1Cr17Ni2 stainless steel based on impact property of V-notch specimen[J]. Materials for Mechanical Engineering, 2016, 40(8): 34-38. [8]马自忠. 奥氏体化温度对Cr17Ni2 钢组织和性能的影响[J]. 金属热处理, 1999, 24(7): 22-24. Ma Zizhong. Effect of austenitizing temperature on microstructure and properties of Cr17Ni2 steel[J]. Heat Treatment of Metals, 1999, 24(7): 22-24. [9]彭谦之, 左华付, 李建军, 等. 回火工艺对1Cr17Ni2不锈钢锻后回火硬度的影响[J]. 金属热处理, 2020, 45(1): 112-116. Peng Qianzhi, Zuo Huafu, Li Jianjun, et al. Effects of tempering process on microstructure and hardness of ZG5Cr17Ni2 martensitic stainless steel[J]. Heat Treatment of Metals, 2020, 45(1): 112-116. [10]曾寿明. 淬火冷却方式对1Cr17Ni2钢回火索氏体粗细和韧性影响[J]. 成发科技, 1999(2): 19-25. Zeng Shouming. Effect of quenching cooling mode on the thickness and toughness of tempered sorbite of 1Cr17Ni2 steel[J]. Chengfa Technology, 1999(2): 19-25. [11]曹志远, 程从前, 王冬颖, 等. 1Cr17Ni2钢U和V形缺口试样夏比冲击性能对比[J]. 材料热处理学报, 2014, 35(S2): 70-74. Cao Zhiyuan, Cheng Congqian, Wang Dongying, et al. Comparison of Charpy impact performance for U-shaped and V-shaped notch specimens of 1Cr17Ni2 steel[J]. Transactions of Materlals and Heat Treatment, 2014, 35(S2): 70-74. [12]马自忠. 奥氏体化温度对Cr17Ni2 钢组织和性能的影响[J]. 金属热处理, 1999, 24(7): 22-24. Ma Zizhong. Effect of austenitizing temperature on microstructure and properties of Cr17Ni2 steel[J]. Heat Treatment of Metals, 1999, 24(7): 22-24. [13]武中豪. 热处理对7Cr14马氏体不锈钢组织与性能的影响[D]. 太原: 中北大学, 2021. [14]罗灵杰, 胡开华. 残余奥氏体对ZG30CrMnSiMoNi钢冲击和磨损性能的影响[J]. 热加工工艺, 2023, 52(12): 61-64. Luo Lingjie, Hu Kaihua. Effects of retained austenite on impact and wear property of ZG30CrMnSiMoNi steel[J]. Hot Working Technology, 2023, 52(12): 61-64. [15]Carrouge D, Bhadeshia H, Woollin P. Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones[J]. Science and Technology of Welding and Joining, 2004, 9(5): 377-389. [16]Zhou S B, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel[J]. Journal of Materials Research and Technology, 2021, 14: 1021-1034. [17]宋 婕, 常英珂, 吴瑞德, 等. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 168-172. Song Jie, Chang Yingke, Wu Ruide, et al. Ductile-brittle transition and embrittlement mechanism of 13Cr11Ni2W2MoV martensitic heat-resistant stainless steel[J]. Materials Reports, 2022, 36(4): 168-172. |