[1]Polevoi E V, Yunin G N, Temlyantsev M V. Differential heat treatment of rails by means of rolling heat[J]. Steel in Translation, 2016, 46(10): 692-700. [2]Kapp M W, Hohenwarter A, Wurster S, et al. Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel[J]. Acta Materialia, 2016, 106: 239-248. [3]刘懿乐, 董华利, 易 军, 等. 在线连续冷却对U75V钢轨组织和性能的影响[J]. 金属热处理, 2017, 42(1): 84-86. Liu Yile, Dong Huali, Yi Jun, et al. Influence of online continuous cooling on microstructure and properties of U75V rail steel[J]. Heat Treatment of Metals, 2017, 42(1): 84-86. [4]Sarychev V D, Molotkov S G, Kormyshev V E, et al. Simulation of differentiated thermal processing of railway rails by compressed air[J]. Steel in Translation, 2021, 50(12): 848-854. [5]李 闯. U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43(1): 152-156. Li Chuang. Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43(1): 152-156. [6]吴庆辉, 杨忠民, 王慧敏, 等. 热变形对耐蚀重轨钢动态再结晶及组织的影响[J]. 热加工工艺, 2013, 42(2): 72-75, 78. Wu Qinghui, Yang Zhongmin, Wang Huimin, et al. Influence of heat deformation on dynamic recrystallization and microstructure of corrosion resistant rail steel[J]. Hot Working Technology, 2013, 42(2): 72-75, 78. [7]Dey I, Ghosh S K, Saha R. Effects of cooling rate and strain rate on phase transformation, microstructure and mechanical behaviour of thermomechanically processed pearlitic steel[J]. Journal of Materials Research and Technology, 2019, 8(3): 2685-2698. [8]刘 硕. 高碳纳米珠光体钢轨钢组织与性能的研究[D]. 秦皇岛: 燕山大学, 2015. Liu Shuo. Study on microstructure and properties of high carbon nanopearlite rail steel[D]. Qinhuangdao: Yanshan University, 2015. [9]高学宗. 50 kg/m钢轨轧制过程的多场耦合数值模拟及实验研究[D]. 秦皇岛: 燕山大学, 2012. Gao Xuezong. Multi-field coupled numerical simulation and experimental research of rolling process for 50 kg/m rail[D]. Qinhuangdao: Yanshan University, 2012. [10]崔健伟. 过共析钢轨力学性能及疲劳裂纹扩展行为研究[D]. 包头: 内蒙古科技大学, 2020. Cui Jianwei. Study on mechanical properties and fatigue crack propagation behavior of hypereutectoid rail[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. [11]郭 婧, 刘利刚, 孙艳亮, 等. 热变形对冷轧工作辊用锻造高速钢CCT曲线的影响[J]. 燕山大学学报, 2013, 37(5): 396-401. Guo Jing, Liu Ligang, Sun Yanliang, et al. Effect of hot deformation on CCT curve of forged high speed steel for cold working roller[J]. Journal of Yanshan University, 2013, 37(5): 396-401. [12]熊 虎. 深过冷再等温条件下珠光体相变过程研究[D]. 贵阳: 贵州大学, 2016. Xiong Hu. Study on the transformation mechanism of pearlitic during isothermal condition after deep undercooling[D]. Guiyang: Guizhou University, 2016. [13]张淑兰, 孙新军, 董 瀚. 0.75C共析钢压缩变形时的组织演变[J]. 特殊钢, 2007, 28(1): 21-23. Zhang Shulan, Sun Xinjun, Dong Han. Structure evolution of 0.75C eutectoid carbon steel during reduction deformation[J]. Special Steel, 2007, 28(1): 21-23. [14]易 航,杨庚蔚, 毛新平, 等. 变形温度对CSP热轧65Mn带钢相变行为的影响[J]. 钢铁研究学报, 2020, 32(1): 74-80. Yi Hang, Yang Gengwei, Mao Xinping, et al. Effect of deformation temperature on phase transformation behavior of hot rolled 65Mn steel produced by CSP process[J]. Journal of Iron and Steel Research, 2020, 32(1): 74-80. [15]杨超飞, 吴庆辉, 陈 颖, 等. Nb含量对高碳钢组织和性能的影响[J]. 热加工工艺, 2012, 41(10): 63-66. Yang Chaofei, Wu Qinghui, Chen Ying, et al. Effect of Nb content on microstructure and mechanical properties of high carbon steel[J]. Hot Working Technology, 2012, 41(10): 63-66. [16]王 凯. Nb微合金化对桥索用高碳钢相变特性及热变形过程的影响[D]. 北京: 钢铁研究总院, 2018. Wang Kai. Effect of Nb micro-alloyed on phase transition properties and hot deformation of high-carbon steel for bridge cable[D]. Beijing: Central Iron & Steel Research Institute, 2018. [17]蔡 珍. 钒微合金化高碳钢形变诱导珠光体相变研究[D]. 武汉: 武汉科技大学, 2019. Cai Zhen. Research on deformation-induced pearlite transformation in vanadium-microalloyed high carbon steel[D]. Wuhan: Wuhan University of Science and Technology, 2019. [18]刘 斌. 高冷速下双相钢组织形成机理与控制因素研究[D]. 武汉: 武汉科技大学, 2019. Liu Bin. Research on formation and controlling factors of microstructure of dual-phase steel under high cooling rate[D]. Wuhan: Wuhan University of Science and Technology, 2019. |