[1]周立玉, 李秀兰, 钟 强, 等. 陶瓷颗粒增强铝基复合材料制备工艺研究进展[J]. 热加工工艺, 2020, 49(18): 21-25. Zhou Liyu, Li Xiulan, Zhong Qiang, et al. Research progress in preparation of ceramic particle reinforced aluminum matrix composites[J]. Hot Working Technology, 2020, 49(18): 21-25. [2]Jiang B C, Chen Q, Yang J. Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(9/10): 1-19. [3]聂金凤, 范 勇, 赵 磊. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015. Nie Jinfeng, Fan Yong, Zhao Lei, et al. Latest research progress on the strengthening and toughening mechanism of particle reinforced aluminum matrix composites[J]. Materials Reports, 2021, 35(9): 9009-9015. [4]王莲莲, 龙 威, 周小平. 粉末冶金制备纯铝基复合材料的研究进展[J]. 热加工工艺, 2018, 47(18): 10-14. Wang Lianlian, Long Wei, Zhou Xiaoping. Research progress on preparation of pure Al matrix composites by powder metallurgy processing[J]. Hot Working Technology, 2018, 47(18): 10-14. [5]Romanov A D, Romanov E A,Vilkov I V, et al. Technology for producing aluminum-matrix composites reinforced with multi-wall carbon nanotubes[J]. Metallurgist, 2022, 66(5/6): 681-687. [6]李士胜. 碳化硅颗粒原位自生碳纳米管增强铝基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2017. Li Shisheng. Prepare SiCp (in situ CNT) reinforced aluminum matrix composites and study on its properties[D]. Shanghai: Shanghai Jiao Tong University, 2017. [7]张清泉. 纳米TiC颗粒孕育Al-Cu合金的组织演变及强韧性[D]. 长春: 吉林大学, 2018. Zhang Qingquan. The microstructure evolution and toughness of Al-Cu alloy inoculated by nano-TiC particles[D]. Changchun: Jilin University, 2018. [8]Gao H T, Liu X H, Qi J L, et al. Strengthening mechanism of surface-modified SiCp/Al composites processed by the powder-in-tube method[J]. Ceramics International, 2019, 45(17): 22402-22408. [9]Wang L,Qiu F, Zhao Q L, et al. Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites[J]. Materials Characterization, 2017, 125: 7-12. [10]王文彬, 王文焱, 谢敬佩, 等. 增强相含量对微波烧结TiC/6061铝基复合材料显微组织和性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(2): 218-222. Wang Wenbin, Wang Wenyan, Xie Jingpei, et al. Effect of reinforce-phase content on microstructure and properties of microwave sintered TiC/6061 Al matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(2): 218-222. [11]吴瑞瑞, 李秋书, 郭 璐, 等. 原位合成TiC/Al(7075)复合材料的组织及力学性能[J]. 复合材料学报, 2017, 34(6): 1334-1339. Wu Ruirui, Li Qiushu, Guo Lu, et al. Microstructure and mechanical properties of TiC/Al(7075) composites fabricated by in situ reaction[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1334-1339. [12]Gao Y Y. Controlling the sizes of in-situ TiC nanoparticles for high-performance TiC/Al-Cu nanocomposites[J]. Ceramics International, 2021, 47(20): 28584-28595. [13]Xie H, Lü J Z, Manolakos D E. Dendrite refinement and improved mechanical properties of SiC/TiC/Al hybrid nanocomposites[J]. Advances in Materials Science and Engineering, 2022. [14]方传阳, 卢雅琳, 王 健, 等. TiCp /2519 复合材料高温力学性能和蠕变行为[J]. 塑性工程学报, 2022, 29(7): 148-156. Fang Chuanyang, Lu Yalin, Wang Jian, et al. Mechanical properties and creep behavior of TiCp/2519 composites at high temperature[J]. Journal of Plasticity Engineering, 2022, 29(7): 148-156. [15]周东帅. 纳米TiCp/Al-Cu复合材料制备和组织与力学性能的研究[D]. 长春: 吉林大学, 2014. Zhou Dongshuai. Study on fabrication microstructures and mechanical properties of the nano-sized TiCp/Al-Cu composites[D]. Changchun: Jilin University, 2014. |