[1]蔡祖光. 对辊机辊圈的磨损及其解决途径 [J]. 砖瓦, 2007(3): 17-19. Cai Zuguang. The ways for reducing the wear of roller ring of roller mill [J]. Block-Brick-Tile, 2007(3): 17-19. [2]丁昌安. 辊式破碎机的结构特点及应用 [J]. 砖瓦, 2006(10): 81-82. Ding Chang'an. The structure characteristics of the roll crusher and its utilization [J]. Block-Brick-Tile, 2006(10): 81-82. [3]娄开钧, 余 瑾, 邓邝川, 等. 提高对辊机辊圈耐磨性能的研究[J]. 铸造, 1994(8): 7-11. Lou Kaijun, Yu Jin, Deng Kuangchuan, et al. Study on increasing wear resistance of roll ring of double-roll machine[J].Foundry, 1994(8): 7-11. [4]马岸奇. 不同材质的耐磨辊圈的研究[J]. 砖瓦, 2018(2): 74-76. [5]朱康峰, 周一帆, 尤学文, 等. 三种热处理工艺对低合金耐磨钢组织和磨损性能的影响[J]. 材料热处理学报, 2021, 42(10): 108-115. Zhu Kangfeng, Zhou Yifan, You Xuewen, et al. Effect of three kinds of heat treatment processes on microstructure and wear resistance of low alloy wear resistant steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(10): 108-115. [6]朱庆华, 闫强军, 葛 昕, 等. 淬火工艺对高等级耐磨钢NM600组织及性能的影响[J]. 宽厚板, 2022, 28(1): 6-10. Zhu Qinghua, Yan Qiangjun, Ge Xin, et al. Effects of quenching process on microstructure and mechanical properties of NM600 grade wear resistant steel[J]. Wide and Heavy Plate, 2022, 28(1): 6-10. [7]付锡彬, 陈子豪, 张 可, 等. 淬火温度对高Ti低合金耐磨钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(4): 122-128. Fu Xibin, Chen Zihao, Zhang Ke, et al. Effect of quenching temperature on microstructure and mechanical properties of high Ti low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(4): 122-128. [8]马文高. 淬火温度对铬钼马氏体耐磨钢组织和力学性能的影响[J]. 上海金属, 2021, 43(4): 38-43. Ma Wengao. Effect of austenitizing temperature on microstructure and mechanical properties of chrome-molybdenum martensite wear-resistant steel[J]. Shanghai Metals, 2021, 43(4): 38-43. [9]张 衡, 张 迪, 刘馨宇, 等. 锻造及热处理工艺对耐磨钢组织及耐磨性能的影响[J]. 金属热处理, 2022, 47(7): 138-143. Zhang Heng, Zhang Di, Liu Xinyu, et al. Effect of forging and heat treatment on microstructure and wear resistance of wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(7): 138-143. [10]李冠楠, 雷明钢, 陈昊天, 等. 非调质NM400复相耐磨钢的相变行为[J]. 金属热处理, 2022, 47(12): 228-233. Li Guannan, Lei Minggang, Chen Haotian, et al. Phase transformation behavior of non-quenched and tempered NM400 multiphase wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(12): 228-233. [11]樊自田, 蒋文明, 郭 鹏, 等. 消失模铸造[J]. 铸造设备与工艺, 2018(6): 63-68. [12]李小兵, 董 鑫, 邢炜伟, 等. 合金元素对Cr-Mo钢第二类回火脆性影响研究综述[J]. 钢铁, 2021, 56(3): 1-12. Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels review[J]. Iron and Steel, 2021, 56(3): 1-12. [13]赵贤平, 邓 深, 温小园, 等. 回火温度对低碳贝氏体钢Q590组织和冲击性能的影响[J]. 宽厚板, 2021, 27(1): 45-48. Zhao Xianping, Deng Shen, Wen Xiaoyuan, et al. Effects of tempering temperature on microstructure and impact properties of Q590 low carbon high strength bainitic steel[J].Wide and Heavy Plate, 2021, 27(1): 45-48. [14]郑东升, 刘 丹, 罗 登, 等. 回火温度对工程机械用超高强钢组织及回火脆性的影响[J]. 金属热处理, 2020, 45(12): 82-86. Zheng Dongsheng, Liu Dan, Luo Deng, et al. Effect of tempering temperature on microstructure and tempering embrittlement of ultra-high strength steel for construction machinery[J]. Heat Treatment of Metals, 2020, 45(12): 82-86. [15]李婷婷. 回火与温变形对马氏体回火脆性的影响[D]. 秦皇岛: 燕山大学, 2020. Li Tingting. Effect of tempering and warm deformation on tempering brittleness of martensite[D]. Qinhuangdao: Yanshan University, 2020. [16]倪红军, 黄明宇, 张福豹, 等. 工程材料[M]. 南京: 东南大学出版社, 2016. Ni Hongjun, Huang Mingyu, Zhang Fubao, et al. Engineering Materials[M]. Nanjing: Southeast University Press, 2016. |