[1]赵麦群, 王伟科, 张 颢, 等. 稀土改性42CrMoS易切削钢中的硫化物夹杂分析[J]. 金属热处理, 2004, 29(11): 20-23. Zhao Maiqun, Wang Weike, Zhang Hao, et al. Analysis on sulphide inclusions in free-cutting 42CrMoS steel modified by rare earth elements[J]. Heat Treatment of Metals, 2004, 29(11): 20-23. [2]王金龙, 乔爱云, 张行刚. 含硫易切削钢切削性机理与硫化物控制简述[J]. 包钢科技, 2015, 41(1): 30-32. Wang Jinlong, Qiao Aiyun, Zhang Xinggang. Summary on mechanism of machinability and control of sulfide for sulphur free-cutting steel[J]. Science and Technology of Baotou Steel, 2015, 41(1): 30-32. [3]王小红, 谢 兵, 冯仲渝. 国内外易切削钢的现状和研究进展[J]. 特殊钢, 2005, 26(4): 26-28. Wang Xiaohong, Xie Bing, Feng Zhongyu. Present status and development of research on free cutting steel at home and abroad[J]. Special Steel, 2005, 26(4): 26-28. [4]Lo K H, Shek C H, Lai J K L. Recent development in stainless steels[J]. Materials Science and Engineering Reports, 2009, 65(4-6): 39-104. [5]罗 刚, 王辉绵. 新型易切削不锈钢TBPS中MnS夹杂相对热塑性的试验研究[J]. 特殊钢, 2016, 37(2): 5-7. Luo Gang, Wang Huimian. Test and study on relative hot plasticity of MnS inclusion in a new free-cutting stainless steel TBPS[J]. Special Steel, 2016, 37(2): 5-7. [6]Ramalingam S, Basu K, Malkin S. Deformation index of MnS inclusions in resulphurized and leaded steels[J]. Material Science and Engineering, 1977, 29(2): 117-121. [7]张永军, 朱 辰, 王立峰, 等. 锡对提高材料切削性能作用的研究[J]. 金属热处理, 2006, 31(1): 27-29. Zhang Yongjun, Zhu Chen, Wang Lifeng, et al. Role of tin for enhancing cutting characteristic of the free cutting steel[J]. Heat Treatment of Metals, 2006, 31(1): 27-29. [8]Matsui N, Hasegawa T, Fujiwara J. Effect of sulfide inclusion morphology on machinability and tool wear mechanism in low carbon free cutting steel[J]. Journal of the Japan Society for Precision Engineering, 2011, 77: 322-326. [9]李洪生, 高 辉. 钢中硫化锰的形态及对钢性能的影响[J]. 一重技术, 2004(4): 26-28. Li Hongsheng, Gao Hui. Form of manganese sulphide contained in steel and influences upon steel property[J]. CFHI Technology, 2004(4): 26-28. [10]Jablonka A, Harste K, Schwerdtfeger K. Thermomechanical properties of iron and iron-carbon alloys: Density and thermal contraction[J]. Steel Research, 1991, 62(1): 24-33. [11]董 凯, 刘建华, 张 佩, 等. 12Cr1MoVG钢连铸坯高温力学性能研究[J]. 钢铁钒钛, 2020, 41(5): 124-129. Dong Kai, Liu Jianhua, Zhang Pei, et al. Research on elevated temperature mechanical properties of 12Cr1MoVG steel continuous casting billet[J]. Iron Steel Vanadium Titanium, 2020, 41(5): 124-129. [12]杨吉春, 高福彬, 任金亮. 00Cr17Mn6Ni5N的高温塑性变形行为研究[J]. 热加工工艺, 2014, 43(16): 102-104. Yang Jichun, Gao Fubin, Ren Jinliang. Research on plastic deformation behavior of 00Cr17Mn6Ni5N at high temperature[J]. Hot Working Technology, 2014, 43(16): 102-104. [13]余新平, 董洪波. 40Cr钢奥氏体动态再结晶过程数值模拟[J]. 特种铸造及有色合金, 2015, 35(1): 26-29. Yu Xinping, Dong Hongbo. Numerical simulation of austenite recrystallization process in 40Cr steel[J]. Special Casting and Nonferrous Alloys, 2015, 35(1): 26-29. [14]李智峥, 申景霞, 吴苏州, 等. 28MnCr5齿轮钢高温力学性能的研究[J]. 铸造技术, 2010, 31(12): 1588-1591. Li Zhizheng, Shen Jingxia, Wu Suzhou, et al. Study on high temperature mechanical properties of 28MnCr5 gear steel[J]. Foundry Technology, 2010, 31(12): 1588-1591. [15]邓振强, 刘建华, 何 杨, 等. FeCrAl不锈钢的平衡凝固相变与析出行为[J]. 工程科学学报, 2017, 39(5): 71-81. Deng Zhenqiang, Liu Jianhua, He Yang, et al. Phase transformations and precipitation behavior in FeCrAl stainless steel during equilibrium solidification [J]. Chinese Journal of Engineering, 2017, 39(5): 71-81. [16]Ito Y, Yonezawa N, Matsubara K. Formation of manganese sulfide in low carbon steel[J]. Tetsu to Hagane, 1982, 68(10): 1569-1577. [17]李代钟. 钢中硫化物夹杂物球化和对钢性能的影响[J]. 钢铁研究学报, 1992, 4(2): 97-101. [18]钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006: 1-10. Zhong Qunpeng, Zhao Zihua. Fractography[M]. Beijing: High Education Press, 2006: 1-10. [19]陈南平, 顾守仁, 沈万慈. 脆断失效分析[M]. 北京: 机械工业出版社, 1993: 151-152. Chen Nanping, Gu Shouren, Shen Wanci. Brittle Fracture Failure Analysis[M]. Beijing: China Machine Press, 1993: 151-152. [20]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. |