[1]王 郁, 王俊升, 薛程鹏, 等. 微合金化对铝合金高温析出相影响的研究进展[J]. 航空制造技术, 2021, 64(15): 68-77, 85. Wang Yu, Wang Junsheng, Xue Chengpeng, et al. Review of microalloying effects on high temperature Al3X precipitates in Al alloys[J]. Aeronautical Manufacturing Technology, 2021, 64(15): 68-77, 85. [2]方华婵, 杨海林, 朱佳敏, 等. Cr、Mn、Zr、Ti微合金化对Al-Zn-Mg-Cu-Yb合金再结晶、第二相和断裂行为的影响[J]. 稀有金属材料与工程, 2020, 49(3): 797-810. Fang Huachan, Yang Hailin, Zhu Jiamin, et al. Effect of minor Cr, Mn, Zr or Ti on recrystallization, secondary phases and fracture behavior of Al-Zn-Mg-Cu-Yb alloys[J]. Rare Metal Materials and Engineering, 2020, 49(3): 797-810. [3]李文才, 吴 浩, 崔恩强, 等. 一种新型Er、Zr微合金化Al-Zn-Mg-Cu合金的均匀化处理[J]. 上海金属, 2021, 43(1): 67-71. Li Wencai, Wu Hao, Cui Enqiang, et al. Homogenizing treatment of a new Al-Zn-Mg-Cu alloy microalloyed with Er and Zr[J]. Shanghai Metals, 2021, 43(1): 67-71. [4]王 旭, 吴 私, 刘运腾, 等. Al-Zn-Mg-(Cu)系铝合金微合金化的研究进展[J]. 山东科学, 2014, 27(1): 56-62. Wang Xu, Wu Si, Liu Yunteng, et al. Research advances of microalloying Al-Zn-Mg-(Cu) series aluminum alloy[J]. Shandong Science, 2014, 27(1): 56-62. [5]刘懿芳, 田 伟, 孙 玥. Al-Zn-Mg-Cu系铝合金微合金化的研究进展[J]. 有色金属材料与工程, 2018, 39(1): 38-41. Liu Yifang, Tian Wei, Sun Yue. Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy[J]. Nonferrous Metal Materials and Engineering, 2018, 39(1): 38-41. [6]Zhang Y, Gao K Y, Wen S P, et al. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy[J]. Journal of Alloys and Compounds, 2014. 610: 27-34. [7]Li Z M, Jiang H C, Wang Y L, et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy[J]. Journal of Materials Science and Technology, 2018, 34(7): 1172-1179. [8]Shi Y J, Pan Q L, Li M J, et al. Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2015, 621(15): 173-181. [9]Wu H, Wen S P, Huang H, et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science and Engineering A, 2017, 689: 313-322 [10]Kendig K L, Miracle D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy[J]. Acta Materialia, 2002, 50(16): 4165-4175. [11]Fuller C, Murray J, Seidman D. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I-Chemical compositions of Al3(Sc1-xZrx) precipitates[J]. Acta Materialia, 2005. 53(20): 5401-5413. [12]Sun Y Q, Luo Y H, Pan Q L, et al. Effect of Sc content on microstructure and properties of Al-Zn-Mg-Cu-Zr alloy[J]. Materials Today Communications, 2020, 26: 101899. [13]Fang H C, Chao H, Chen K H. Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2014, 610: 10-16. [14]Wang Y C, Wu X D, Cao L F, et al. Effect of trace Er on the microstructure and properties of Al-Zn-Mg-Cu-Zr alloys during heat treatments[J]. Materials Science and Engineering A, 2020, 792: 139807. [15]Ralston K, Birbilis N, Davies C. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12): 1201-1204. |