[1]王 锰, 陈伟庆, 郝占全, 等. 加热期间弹簧钢55SiCr表面脱碳的影响因素研究[J]. 河南冶金, 2010, 18(2): 12-14, 52. Wang Meng, Chen Weiqing, Hao Zhanquan, et al. Study on surface decarburization of 55SiCr spring steel during heating[J]. Henan Metallurgy, 2010, 18(2): 12-14, 52. [2]王晓峰, 陈伟庆. 冷却速率对55SiCr弹簧钢的相变组织和显微硬度的影响[J]. 上海金属, 2010, 32(6): 13-15. Wang Xiaofeng, Chen Weiqing. Influence of cooling rate on transformation structure and micro-hardness of spring steel 55SiCr[J]. Shanghai Metals, 2010, 32(6): 13-15. [3]Liu Y, Zhang W, Tong Q, et al. Effects of temperature and oxygen concentration on the characteristics of decarburization of 55SiCr spring steel[J]. ISIJ International, 2014, 54(8): 1920-1926. [4]张先鸣. 汽车悬架系统用弹簧钢的发展[J]. 汽车工艺师, 2017(2): 46-48. [5]秦立富, 王治宝, 王德虎, 等. 新型含Nb弹簧钢LPD65应用研究[J]. 冶金工程, 2020, 7(1): 35-40. Qin Lifu, Wang Zhibao, Wang Dehu, et al. Application research on new Nb-containing spring steel LPD65[J]. Metallurgical Engineering, 2020, 7(1): 35-40. [6]陈再良, 付海峰, 吕东显. 55CrSi弹簧钢的氢脆断裂分析[J]. 金属热处理, 2011, 36(S1): 383-387. Chen Zailiang, Fu Haifeng, Lü Dongxian. Hydrogen embrittlement analysis for 55CrSi spring steel[J]. Heat Treatment of Metals, 2011, 36(S1): 383-387. [7]Hayakawa M, Mizuno H, Suzuki T, et al. Evaluation of susceptibility to hydrogen embrittlement for vanadium added spring steel with tensile strength of 2 GPa class[J]. Tetsu-to-Hagane, 2015, 101(1): 33-39. [8]莫精忠, 杨 周, 毛向阳, 等. 正火预处理对42CrMoVNb高强度螺栓钢耐延迟断裂性能的影响[J]. 上海金属, 2020, 42(6): 5-8, 14. Mo Jingzhong, Yang Zhou, Mao Xiangyang, et al. Effect of normalizing pretreatment on delayed fracture resistance of 42CrMoVNb high strength bolt steel[J]. Shanghai Metals, 2020, 42(6): 5-8, 14. [9]Weng Y Q, Dong H, Gan Y. The recent development of advanced automobile steel sheets and long products[C]//Proceedings of 2009 International Symposium on Automobile Steel, 2009: 3-17. [10]Jiang T, Zhong J, Zhang X, et al. Hydrogen embrittlement induced fracture of 17-4 PH stainless steel valve stem[J]. Engineering Failure Analysis, 2020, 113(5): 104576. [11]Li Y D, Yang Z G, Liu Y B, et al. The influence of hydrogen on very high cycle fatigue properties of high strength spring steel[J]. Materials Science and Engineering A, 2008, 489(1/2): 373-379. [12]Zhao S, Chen J, Gao J, et al. Investigation on the causes of abnormal fracture of high-strength steel wire[J]. Journal of Failure Analysis and Prevention, 2021, 21(3): 1011-1018. [13]Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel[J]. Journal of Iron and Steel Research, International, 2011, 18(6): 49-53. [14]苗发生. T10A高强度弹簧钢的氢脆敏感性与组织形态的关系[J]. 金属热处理, 1986, 11(4): 11-16. Miao Fasheng. The relation between the hydrogen brittleness susceptibility and the structure morphology of T10A spring steel[J]. Heat Treatment of Metals, 1986, 11(4): 11-16. [15]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010: 184-186. [16]崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2007: 175-176. [17]Komatsuzaki Y, Joo H, Yamada K. Influence of yield strength levels on crack growth mode in delayed fracture of structural steels[J]. Engineering Fracture Mechanics, 2008, 75(3/4): 551-559. [18]Sanchez J, Lee S F, Martin-Rengel M A, et al. Measurement of hydrogen and embrittlement of high strength steels[J]. Engineering Failure Analysis, 2015, 59: 467-477. [19]昝 娜. 微观组织和合金成分对高锰奥氏体TWIP钢延迟断裂的影响[D]. 沈阳: 东北大学, 2015. Zan Na. Influence of microstructure and alloying elements on delayed fracture in high Mn austenitic TWIP steels[D]. Shenyang: Northeastern University, 2015. |