[1]Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Metal Science Journal, 2002, 18(3): 279-284. [2]Caballero F G, Bhadeshia H. Very strong bainite [J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 251-257. [3]Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Materials Science Forum, 2005, 500-501: 495-502. [4]Hu H J, Xu G, Liu F, et al. Dynamic observation of twin evolution during austenite grain growth in an Fe-C-Mn-Si alloy [J]. International Journal of Materials Research, 2014, 105(4): 337-341. [5]Zhou M X, Xu G, Wang L, et al. Combined effect of the prior deformation and applied stress on the bainite transformation [J]. Metals and Materials International, 2016, 22(6): 956-961. [6]Zhang X X, Xu G, Wang X, et al. Mechanical behavior of carbide-free medium carbon bainitic steels [J]. Metallurgical and Materials Transactions A, 2014, 45(3): 1352-1361. [7]Zhang M, Wang Y H, Zheng C L, et al. Effects of ausforming on isothermal bainite transformation behavior and microstructural refinement in medium-carbon Si-Al-rich alloy steel [J]. Materials and Design, 2014, 62(10): 168-174. [8]Zhou M X, Xu G, Hu H J, et al. Comprehensive analysis on the effects of different stress states on the bainitic transformation [J]. Materials Science and Engineering A, 2017, 704(9): 427-433. [9]Garcia-Mateo C, Caballero F G, Bhadeshia H. Acceleration of low-temperature bainite [J]. ISIJ International, 2003, 43(11): 1821-1825. [10]Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production [J]. Materials and Design, 2011, 32: 3248-3253. [11]Yang J, Wang T S, Zhang B, et al. Microstructure and mechanical properties of high-carbon Si-Al-rich steel by low-temperature austempering [J]. Materials and Design, 2012, 35(3): 170-174. [12]尚成嘉, 杨善武, 王学敏, 等. 低碳贝氏体钢的组织类型及其对性能的影响[J]. 钢铁, 2005, 40(4): 57-61. Shang Chengjia, Yang Shanwu, Wang Xuemin, et al. Microstructure and mechanical properties of low carbon bainitic steel [J]. Iron and Steel, 2005, 40(4): 57-61. [13]尚成嘉, 王学敏, 杨善武, 等. 高强度低碳贝氏体钢的工艺与组织细化[J]. 金属学报, 2003, 39(10): 1019-1024. Shang Chengjia, Wang Xuemin, Yang Shanwu, et al. Microstructure refinement of high strength low carbon bainitic steel [J]. Acta Metallurgica Sinica, 2003, 39(10): 1019-1024. [14]方鸿生, 邓海佥. 低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性[J]. 机械工程材料, 1981(1): 7-16. [15]高 宽, 王六定, 朱 明, 等. 低合金超高强度贝氏体钢的晶粒细化与韧性提高[J]. 金属学报, 2007, 43(3): 315-320. Gao Kuan, Wang Liuding, Zhu Ming, et al. Refinement of grain and enhancement of impact toughness for low-alloying ultra-high strength bainite steels [J]. Acta Metallurgica Sinica, 2007, 43(3): 315-320. [16]马成勇, 田志凌, 杜则裕, 等. 超低碳贝氏体钢及其焊接特性[J]. 钢铁, 2002, 37(6): 68-73. Ma Chengyong, Tian Zhiling, Du Zeyu, et al. Ultra-low carbon bainitic steel and its welding [J]. Iron and Steel, 2002, 37(6): 68-73. [17]邹 航, 刘 曼, 徐 光. 轧后冷却条件对低碳贝氏体钢组织性能的影响[J]. 钢铁, 2021, 56(9): 144-150. Zou Hang, Liu Man, Xu Guang. Effect of cooling conditions after rolling on microstructure and properties of a low-carbon bainitic steel [J]. Iron and Steel, 2021, 56(9): 144-150. [18]Rui F, Li S, Li Z, et al. Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering [J]. Materials Science and Engineering A, 2012, 558: 205-210. [19]Pan P, Tang H, Chen X, et al. Effects of direct-quenching and tempering on the microstructure and mechanical properties of an ultra-low carbon Ti containingbainite steel [J]. Materials Science and Engineering A, 2020, 796: 139987. [20]Wang F, Qian D, Mao H, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. Journal of Materials Research and Technology, 2020, 9(3): 6712-6722. [21]Jiang Z, Li Y, Yang Z, et al. The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite [J]. Materials Today Communications, 2021, 26(12): 102166. [22]彭 云, 郑惠锦. 回火温度对低合金高强度贝氏体钢组织和性能的影响[J]. 材料热处理学报, 2017, 38(7): 114-119. Peng Yun, Zheng Huijin. Effect of tempering temperature on microstructure and mechanical properties of high strength low alloy bainite steel [J]. Transactions of Materials and Heat Treatment, 2017, 38(7): 114-119. [23]孙晓文, 林诗慧, 王天生. 高碳高硅纳米贝氏体钢回火后的组织与力学性能[J]. 材料热处理学报, 2021, 42(6): 98-106. Sun Xiaowen, Lin Shihui, Wang Tiansheng. Microstructure and mechanical properties of tempered high-C-Si nano-bainite steel [J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 98-106. [24]石俊亮, 郑为为, 梁兴国. 回火温度对铁素体/粒状贝氏体钢显微组织及力学性能的影响[J]. 材料热处理学报, 2019, 40(9): 107-113. Shi Junliang, Zheng Weiwei, Liang Xingguo. Effects of tempering on microstructure and mechanical properties of fine grain ferrite/granular bainite dual phase steel [J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 107-113. [25]侯敬超, 计云萍, 刘宗昌, 等. 20MnCrNi2MoRE钢贝氏体回火过程[J]. 材料热处理学报, 2015, 36(1): 114-118. Hou Jingchao, Ji Yunping, Liu Zongchang, et al. Bainite tempering process of 20MnCrNi2MoRE steel [J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 114-118. |