[1]黎文献. 镁及镁合金[M]. 湖南: 中南大学出版社, 2005. [2]Nie J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(11): 3891-3939. [3]Kawamura Y, Morisaka T, Yamasaki M. Structure and mechanical properties of rapidly solidified Mg97Zn1RE2 alloys[J]. Materials Science Forum, 2003, 419-422: 751-756. [4]Nuttall P A. Precipitation hardening in magnesium alloys[D]. Nottingham: University of Nottingham, 1973. [5]Morgan J E, Mordike B L. An investigation into creep-resistant, as-cast magnesium alloys containing yttrium, zinc, neodymium and zirconium[J]. Metallurgical Transactions A, 1981, 12(9): 1581-1585. [6]车 波, 卢立伟, 吴木义, 等. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258. Che Bo, Lu Liwei, Wu Muyi, et al. Effect of pre-aging on microstructure and mechanical properties of wrought magnesium alloy[J]. Materials Reports, 2021, 35(21): 21249-21258. [7]Xu S W, Matsumoto N, Kamado S, et al. Effect of pre-aging treatment on microstructure and mechanical properties of hot compressed Mg-9Al-1Zn alloy[J]. Materials Science and Engineering A, 2009, 517(1/2): 354-360. [8]Jeong S H, Kim Y J, Kong K H, et al. Enhancement of mechanical properties of extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn alloy through pre-aging treatment[J]. Metals and Materials International, 2018, 24(2): 391-399. [9]Song B, Xin R L, Chen G, et al. Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling[J]. Scripta Materialia, 2012, 66(12): 1061-1064. [10]Zheng K Y, Dong J, Zeng X Q, et al. Effect of pre-deformation on aging characteristics and mechanical properties of a Mg-Gd-Nd-Zr alloy[J]. Materials Science and Engineering A, 2008, 491(1/2): 103-109. [11]Kang Y H, Wang X X, Zhang N, et al. Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy[J]. Materials Science and Engineering A, 2017, 689: 435-445. [12]Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A, 2008, 39(2): 243-251. [13]Elgallad E M, Zhang Z, Chen X G. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy[J]. Materials Science and Engineering A, 2015, 625: 213-220. [14]郭 亮, 梁霄鹏, 李慧中, 等. 双级时效对Mg-2.8Nd-0.4Zn-0.5Zr 合金微观组织和力学性能的影响[J]. 湖南有色金属, 2018, 34(3): 51-55, 77. Guo Liang, Liang Xiaopeng, Li Huizhong, et al. Effect of two-step aging on microstructures and mechanical properties of Mg-2.8Nd-0.4Zn-0.5Zr alloy[J]. Hunan Nonferrous Metals, 2018, 34(3): 51-55, 77. [15]Rosalie Julian M, Somekawa H, Singh A, et al. Effect of precipitation on strength and ductility in a Mg-Zn-Y alloy[J]. Journal of Alloys and Compounds, 2013, 550: 114-123. [16]Shi G L, Zhang D F, Zhang H J, et al. Influence of pre-deformation on age-hardening response and mechanical properties of extruded Mg-6%Zn-1%Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(3): 586-592. [17]Li G Q, Zhang J H, Wu R Z, et al. Improving age hardening response and mechanical properties of a new Mg-RE alloy via simple pre-cold rolling[J]. Journal of Alloys and Compounds, 2019, 777: 1375-1385. [18]Wang C P, Xin R L, Li D R, et al. Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation[J]. Materials Science and Engineering A, 2017, 680: 152-156. [19]Song B, Du Z W, Yang Q S, et al. Effect of pre-rolling path on mechanical properties of rolled ZK60 alloys[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1322-1338. [20]Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility[J]. Metallurgical and Materials Transactions A, 2002, 33(13): 813-822. [21]Wang J, Liu L, Tomé C N, et al. Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals[J]. Materials Research Letters, 2013, 1(2): 81-88. [22]Xin Y C, Lv L C, Chen H W, et al. Effect of dislocation-twin boundary interaction on deformation by twin boundary migration[J]. Materials Science and Engineering A, 2016, 662: 95-99. [23]李万鹏, 刘翠秀, 陈 斌, 等. Mg-Y-Nd合金{1011}孪晶界面稀土原子偏聚的电子显微研究[J]. 电子显微学报, 2018, 37(6): 563-570. Li Wanpeng, Liu Cuixiu, Chen Bin, et al. Electron microscopy study of the segregation of RE solute atoms to {1011} twin boundaries in Mg-Y-Nd alloy[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(6): 563-570. [24]Barnett M R. Twinning and the ductility of magnesium alloys[J]. Materials Science and Engineering A, 2007, 464(1/2): 1-7. [25]Kang Y H, Huang Z H, Wang S C, et al. Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300 ℃[J]. Journal of Magnesium and Alloys, 2020, 8(1): 103-110. [26]刘天模, 袁晗琦, 彭天成, 等. 变形条件对AZ31镁合金冷压缩过程中孪生的影响[J]. 重庆大学学报, 2010, 33(10): 37-41. Liu Tianmo, Yuan Hanqi, Peng Tiancheng, et al. Effect of deformation conditions on twinning of AZ31 magnesium alloy during compression test[J]. Journal of Chongqing University, 2010, 33(10): 37-41. [27]何杰军. AZ31镁合金的形变孪生行为及孪生机制[D]. 重庆: 重庆大学, 2014. He Jiejun. Twinning behaviour and twinning mechanism in magnesium alloy AZ31[D]. Chongqing: Chongqing University, 2014. [28]Wang R, Mao P, Liu Y, et al. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys[J]. Materials Science and Engineering A, 2019, 742: 309-317. [29]汪 涛. Mg-Y-Nd-Zn合金的变形结构及交互作用特征的电子显微研究[D]. 北京: 北京工业大学, 2016. Wang Tao. Electron microscopy study on the deformation microstructures and involved interaction in Mg-Y-Nd-Zn alloy[D]. Beijing: Beijing University of Technology, 2016. [30]朱涛涛. 不同加载路径下镁合金的孪生行为及其对塑性变形的影响[D]. 重庆: 重庆大学, 2019. Zhu Taotao. Twinning behavior and its effect on plastic deformation of magnsium alloys under different loading paths[D]. Chongqing: Chongqing University, 2019. [31]Gray G. Influence of strain rate and temperature on the structure. Property behavior of high-purity titanium[J]. Le Journal de Physique IV, 1997, 7(C3): 423-428. [32]Mo C, Kontsos A. Twinning contributions to strain localizations in magnesium alloys[J]. Materials Science and Engineering A, 2018, 722: 206-215. [33]Vignesh Kannan A, Kavan Hazeli B C, Ramesh K T A. The mechanics of dynamic twinning in single crystal magnesium[J]. Journal of the Mechanics Physics of Solids, 2018, 120: 154-178. [34]Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metallurgical Transactions A, 1981, 12(3): 409-418. [35]Zheng R X, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures[J]. Scripta Materialia, 2017, 131: 1-5. [36]Koike J. Dislocation plasticity and complementary deformation mechanisms in polycrystalline Mg alloys[J]. Materials Science Forum, 2004, 449-452: 665-668. [37]Guo F, Yu H, Wu C, et al. The mechanism for the different effects of texture on yield strength and hardness of Mg alloys[J]. Scientific Reports, 2017, 7(1): 8647. [38]Rosalie Julian M, Somekawa H S, Singh A, et al. The effect of size and distribution of rod-shaped precipitates on the strength and ductility of a Mg-Zn alloy[J]. Materials Science and Engineering A, 2012, 539: 230-237. [39]李长征. 预变形方式对沉淀硬化镁合金组织和时效硬化行为的影响[D]. 重庆: 重庆大学, 2018. Li Changzheng. The influence of pre-deformation on microstructure and age hardening of Mg alloys[D]. Chongqing: Chongqing University, 2018. [40]Zhang Yin, Liu Tianmo, Ding Xuezheng, et al. The precipitation behavior of a pretwinned Mg-6Al-1Zn alloy and the effect on subsequent deformation[J]. Journal of Materials Research, 2014, 29(18): 2141-2146. [41]Chen H B, Liu T M, Zhang Y, et al. The yield asymmetry and precipitation behavior of pre-twinned ZK60 alloy[J]. Materials Science and Engineering A, 2016, 652: 167-174. [42]胡欢欢. 预拉伸及时效处理对Mg-5Zn合金组织性能的影响[D]. 重庆: 重庆大学, 2015. Hu Huanhuan. Influence of pre-stretching and aging on the microstructure and mechanical properties of Mg-5Zn alloy[D]. Chongqing: Chongqing University, 2015. [43]Sun Q Y, Wang L P, Liu D R. Effects of pre-stretching on microstructure and properties of WE43A-alloy after aging treatment[J]. Materials Science and Technology, 2019, 35(12): 1448-1456. [44]Xu Z, Weyland M, Nie J F. On the strain accommodation of β1 precipitates in magnesium alloy WE54[J]. Acta Materialia, 2014, 75: 122-133. [45]Zhang H, Yan C G, Li C Z, et al. Thermal stability of extension twins in Mg-3Al-1Zn rods[J]. Journal of Alloys and Compounds, 2017, 696: 428-434. [46]He J, Bin J, Qin Y, et al. Improved the anisotropy of extruded Mg-3Li-3Al-Zn alloy sheet by presetting grain re-orientation and subsequent annealing[J]. Journal of Alloys and Compounds, 2016, 676: 64-73. [47]Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610. [48]郑晓剑, 余辉辉, 信运昌. 利用孪晶界面强韧化镁合金[J]. 中国材料进展, 2016, 35(11): 819-824, 834. Zheng Xiaojian, Yu Huihui, Xin Yunchang. Hardening and toughening Mg alloys using twin boundaries[J]. Materials China, 2016, 35(11): 819-824, 834. [49]Robson J D, Stanford N, Barnett M R. Effect of precipitate shape on slip and twinning in magnesium alloys[J]. Acta Materialia, 2011, 59(5): 1945-1956. [50]Lu K, Lu L. Preface to the viewpoint set on the strengthening effect of nanoscale twins[J]. Scripta Materialia, 2012, 66(11): 835-836. |