[1]Yang H Q, Zhang Q, Li Y M, et al. Effects of mechanical stress and cathodic protection on the performance of a marine organic coating on mild steel[J]. Materials Chemistry and Physics, 2021, 261: 124233. [2]Vinodhini S P, Xavier J R. Evaluation of corrosion protection performance and mechanical properties of epoxy-triazole/graphene oxide nanocomposite coatings on mild steel[J]. Journal of Materials Science, 2021, 56: 7094-7110. [3]冉 斗, 孟惠民, 刘 星, 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59. Ran Dou, Meng Huimin, Liu Xing, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(1): 51-59. [4]陈学群, 张万灵, 陈 珊, 等. 经济型耐腐蚀钢中氧作用的研究[J]. 工程科学学报, 2021, 43(7): 960-965. Chen Xuequn, Zhang Wanling, Chen Shan, et al. Effect of oxygen on economical corrosion resistant steel[J]. Chinese Journal of Engineering, 2021, 43(7): 960-965. [5]杨 江. 采用磁控溅射法在钢材表面镀钛膜研究[D]. 成都: 西华大学, 2012. Yang Jiang. The research of titanium film deposited on steel surface by magnetron sputtering[D]. Chengdu: Xihua University, 2012. [6]辛 蔚, 王玉江, 魏世丞, 等. 热喷涂制备非晶合金涂层性能的研究进展[J]. 工程科学学报, 2021, 43(3): 311-320. Xin Wei, Wang Yujiang, Wei Shicheng, et al. Research progress on the properties of amorphous alloy coatings prepared by thermal spraying[J]. Chinese Journal of Engineering, 2021, 43(3): 311-320. [7]赵 帅, 孙建春, 周 文, 等. 基于电沉积镍的低碳钢表面合金化扩散研究[J]. 热加工工艺, 2018, 47(10): 137-139, 143. Zhao Shuai, Sun Jianchun, Zhou Wen, et al. Study on surface alloying diffusion of low carbon steel based on electrodeposited nickel[J]. Hot Working Technology, 2018, 47(10): 137-139, 143. [8]刘 双. 镍基金属涂层的制备及其腐蚀行为和机理研究[D]. 成都: 西南石油大学, 2019. Liu Shuang. Preparation, corrosion behavior and mechanism ofnickel based metal coatings[D]. Chengdu: Southwest Petroleum University, 2019. [9]耿 瑛, 李菲晖, 巩运兰, 等. 温度对钢基体上暗镍镀层性能的影响[J]. 电镀与精饰, 2015, 37(4): 1-5. Geng Ying, Li Feihui, Gong Yunlan, et al. Effects of temperature on the properties of nickel coatings electrodeposited on steel substrate[J]. Plating and Finishing, 2015, 37 (4): 1-5. [10]赵国辰. 一步电镀镍复合纳米层改善低碳钢表面性能及相关技术的拓展研究[D]. 上海: 上海大学, 2016. Zhao Guochen. One step electroplating of nickel based nanocomposite coatings for improving the surface properties of mild steel and the application of corresponding technique[D]. Shanghai: Shanghai University, 2016. [11]Bolzmann L. Zur integration der diffusionsgleichung bei variabeln diffusions coefficienten[J]. Wiedemann's Annalen, 1894, 53: 959-964. [12]Kavakbasi B T, Golovin I S, Paul A, et al. On the analysis of composition profiles in binary single-phase diffusion couples: Systems with a strong compositional dependence of the interdiffusion coefficient[J]. Defect and Diffusion Forum, 2018, 383: 23-30. [13]Li J Q, Yuan C H. Electrochemical study of the effect of oxidation and amorphization of Cr nanoparticles on the co-deposition of Ni-Cr nanocomposite film[J]. Journal of Electroanalytical Chemistry, 2017, 795: 110-115. [14]李孟星, 张宏博, 孟祥海, 等. 退火过程中Ni的扩散行为[J]. 金属热处理, 2019, 44(9): 46-51. Li Mengxing, Zhang Hongbo, Meng Xianghai, et al. Diffusion behavior of Ni during annealing[J]. Heat Treatment of Metals, 2019, 44(9): 46-51. [15]Zhang Q, Wu J, Jiang S, et al. The effect of grain size on the diffusion bonding properties of SP700 alloy[J]. Metals, 2022, 12(2): 237. [16]杨朝曦, 柳文波, 张璁雨, 等. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟[J]. 物理学报, 2021, 70(11): 236-245. Yang Chaoxi, Liu Wenbo, Zhang Congyu, et al. Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys[J]. Acta Physica Sinica, 2021, 70(11): 236-245. [17]Lin I C, Lin C J, Tuan W H. Diffusion coefficient of carbon in Fe-Ni alloy during synthesis of diamond under high temperature and high pressure[J]. Ceramics International, 2013, 39(8): 8861-8864. [18]Hong L K, Cheng R, Ai L Q, et al. Mechanism of carbon diffusion in the iron sheet during gas-solid decarburization[J]. Transactions of the Indian Institute of Metals, 2019, 72(2): 335-342. [19]Wang H Y, Gao X Y, Ren H P, et al. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 153-157. [20]Sebastian A K, Sungwoo S, David U, et al. Phase selection motifs in high entropy alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC[J]. Acta Materialia, 2019, 166: 677-686. [21]董 凤, 陈少平, 胡利方, 等. 电场作用下AZ31B/Cu扩散界面的结构及性能[J]. 材料工程, 2015, 43(2): 35-40. Dong Feng, Chen Shaoping, Hu Lifang, et al. Structure and properties of AZ31B/Cu diffusion interface under electric field[J]. Journal of Materials Engineering, 2015, 43(2): 35-40. [22]Pan R, Wang Q, Sun D L, et al. Effects of electric field on interfacial microstructure and shear strength of diffusion bonded α-Al2O3/Ti joints[J]. Journal of the European Ceramic Society, 2015, 35(1): 219-226. |