[1]孙纯纯, 郭志君, 张金勇, 等. 亚稳β钛合金在生物医学领域的研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1111-1124. Sun Chunchun, Guo Zhijun, Zhang Jinyong, et al. Research progress on metastable β-titanium alloys for biomedical applications[J]. Rare Metal Materials and Engineering, 2022, 51(3): 1111-1124. [2]黄文君, 王洋洋. 航空材料钛及钛合金的特性及发展趋势[J]. 内燃机与配件, 2021(11): 40-41. [3]李军兆, 孙清洁, 于 航. 高性能钛合金先进成形技术研究现状[J]. 钢铁钒钛, 2021, 42(6): 17-27. Li Junzhao, Sun Qingjie, Yu Hang. Current research status of advanced forming technology for high-performance titanium alloys[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 17-27. [4]王文婷, 李 沛, 寇文娟, 等. 时效温度对Ti1023和Ti5553合金微观组织与析出硬化的影响规律[J]. 稀有金属材料与工程, 2020, 49(5): 1707-1714. Wang Wenting, Li Pei, Kou Wenjuan, et al. Effect of aging temperature on microstructures and precipitation hardening in Ti1023 and Ti5553 alloys[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1707-1714. [5]张瑞雪, 马英杰, 黄森森, 等. 固溶时间对Ti-5553显微组织及拉伸性能的影响[J]. 稀有金属材料与工程, 2020, 49(3): 985-989. Zhang Ruixue, Ma Yingjie, Huang Sensen, et al. Effect of solution time on microstructures and mechanical properties of Ti-5553 alloy[J]. Rare Metal Materials and Engineering, 2020, 49(3): 985-989. [6]杨 柳, 王 莹, 林崇智, 等. Ti-15V-3Cr-3Sn-3Al钛合金固溶-时效过程的析出行为[J]. 稀有金属材料与工程, 2019, 48(6): 1936-1943. Yang Liu, Wang Ying, Lin Chongzhi, et al. Precipitation behavior of Ti-15V-3Cr-3Al-3Sn alloy during solution and aging heat treatment[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1936-1943. [7]杜赵新, 刘国龙, 崔晓明, 等. 预时效工艺对Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2019, 48(6): 1904-1908. Du Zhaoxin, Liu Guolong, Cui Xiaoming, et al. Effect of pre-aging on microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe alloy[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1904-1908. [8]岳 旭, 同晓乐, 杨嘉珞, 等. Ti-1300F高强钛合金丝材热处理工艺优化[J]. 钛工业进展, 2021, 38(3): 23-28. Yue Xu, Tong Xiaole, Yang Jialuo, et al. Optimization of heat treatment process for Ti-1300F high strength titanium alloy wire[J]. Titanium Industry Progress, 2021, 38(3): 23-28. [9]Harr M, Daly S, Pilchak A L. The Effect of temperature on slip in microtextured Ti-6Al-2Sn-4Zr-2Mo under dwell fatigue[J]. International Journal of Fatigue, 2021, 147: 106173. [10]Wen Xin, Wan Mingpan, Huang Chaowen, et al. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy[J]. Materials and Design, 2019, 180: 107898. [11]Chung W C, Tsat L W, Chen C. Microstructure and notch properties of heat-treated Ti-4.5Al-3V-2Mo-2Fe laser welds[J]. Materials Transactions, 2009, 50(3): 544-550. [12]Esmaily M, Mortazavi S N, Todehfalah P, et al. Microstructural characterization and formation of α′ martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes[J]. Materials and Design, 2013, 47: 143-150. [13]辛社伟, 赵永庆. 钛合金固态相变的归纳与讨论(Ⅵ)—阿尔法[J]. 钛工业进展, 2013, 30(4): 1-8. Xin Shewei, Zhao Yongqing. Inductions and discussions of solid state phase transformation of titanium alloy (Ⅵ)——Alpha[J]. Titanium Industry Progress, 2013, 30(4): 1-8. [14]Furuhara T. Role of defects on microstructure development of β titanium alloys[J]. Metals and Materials, 2000, 6(3): 221-224. [15]胡赓祥, 蔡 珣. 材料科学基础[M]. 上海: 上海交通大学出版社, 2006: 169-192. [16]杨 义, 黄爱军, 徐 峰, 等. BT18y钛合金等轴组织与全片层组织的室温拉伸塑性[J]. 中国有色金属学报, 2005(5): 768-774. Yang Yi, Huang Aijun, Xu Feng, et al. Room-temperature tensile plasticity of BT18y titanium alloy with equiaxed structure and fully lamellar structure[J]. The Chinese Journal of Nonferrous Metals, 2005(5): 768-774. [17]Wang Huan, Xin Shewei, Zhao Yongqing, et al. Plane strain fracture behavior of a new high strength Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy during heat treatment[J]. Materials Science and Engineering A, 2020, 797: 140080. |