[1]刘正东, 陈正宗, 包汉生, 等. 新一代马氏体耐热钢G115研发及工程化[M]. 北京: 冶金工业出版社, 2020. [2]赵 欣, 陈正宗, 赵海平. 新型马氏体耐热钢G115大型铸件热处理过程有限元分析[J]. 金属热处理, 2022, 47(2): 229-236. Zhao Xin, Chen Zhengzong, Zhao Haiping. Finite element analysis of novel martensitic heat-resistant steel G115 heavy castings[J]. Heat Treatment of Metals, 2022, 47(2): 229-236. [3]刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical(A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [4]雷丙旺, 李永清, 庞海平, 等. 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术[J]. 金属功能材料, 2020, 27(5): 14-19. Lei Bingwang, Li Yongqing, Pang Haiping, et al. Manufacturing technology of novel heat resistant steel G115 large-diameter heavy wall seamless pipe[J]. Metallic Functional Materials, 2020, 27(5): 14-19. [5]徐连勇, 赵 雷, 唐正焮. 高温部件蠕变-疲劳裂纹扩展行为表征[J]. 电力科技与环保, 2021, 37(4): 1-11. Xu Lianyong, Zhao Lei, Tang Zhengxin. Characterization of creep-fatigue crack growth behavior for high temperature components[J]. Electric Power Technology and Environmental Protection, 2021, 37(4): 1-11. [6]Tang Z, Jing H, Xu L, et al. Creep-fatigue crack growth behavior of G115 steel under different hold time conditions[J]. International Journal of Fatigue, 2018, 116: 572-583. [7]Tang Z, Jing H, Xu L, et al. Crack growth behavior, fracture mechanism, and microstructural evolution of G115 steel under creep-fatigue loading conditions[J]. International Journal of Mechanical Sciences, 2019, 161-162: 105037. [8]Tang Z, Jing H, Xu L, et al. Temperature effect on dwell-fatigue crack propagation behavior of novel tempered martensitic ferritic steel G115[J]. Engineering Fracture Mechanics, 2020, 237: 107250. [9]Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002. [10]He Y S, Chang J C, Lee J Y, et al. Effect of aging on the creep properties and microstructural evolution of P92 steel[J]. Key Engineering Materials, 2017, 727: 52-58. [11]Wang X, Xu Q, Yu S, et al. Laves-phase evolution during aging in 9Cr-1.8W-0.5Mo-VNb steel for USC power plants[J]. Materials Chemistry and Physics, 2015, 163: 219-228. [12]Fedorova I, Belyakov A, Kozlov P, et al. Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K[J]. Materials Science and Engineering A, 2014, 615: 153-163. [13]Sakthivel T, Laha K, Parameswaran P, et al. Effect of thermal aging on microstructure and mechanical properties of P92 steel[J]. Transactions of the Indian Institute of Metals, 2015, 68(3): 411-421. [14]Sklenicka V, Kucharova K, Svobodova M, et al. The effect of a prior short-term ageing on mechanical and creep properties of P92 steel[J]. Materials Characterization, 2018, 136: 388-397. [15]Sasaki L, Hénaff G, Arzaghi M, et al. Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti 17[J]. Materials Science and Engineering A, 2017, 707: 253-258. [16]ASTM E2760-16. Standard test method for creep-fatigue crack growth testing[S]. [17]梁宝琦, 孙嘉欣, 程 义, 等. G115钢650 ℃时效的组织与性能研究[J]. 锅炉制造, 2021(5): 45-48, 60. Liang Baoqi, Sun Jiaxin, Cheng Yi, et al. Study on microstructure and mechanical properties of G115 steel aged at 650 ℃[J]. Boiler Manufacturing, 2021(5): 45-48, 60. [18]Yang H, Bao R, Zhang J, et al. Crack growth behaviour of a nickel-based powder metallurgy superalloy under elevated temperature[J]. International Journal of Fatigue, 2011, 33(4): 632-641. |