[1]孙维鑫. TC4表面稀土-铝热浸镀层制备及组织结构研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. Sun Weixin. Study on preparation and organization structure of aluminum-RE heat coating on titanium surface[D]. Harbin: Harbin Engineering University, 2014. [2]高 菲. 钛铝金属间化合物/钛合金结构梯度涂层形成机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. Gao Fei. Study on the formation mechanism of Ti-Al intermetallic/titanium alloy gradient structure[D]. Harbin: Harbin Engineering University, 2012. [3]赵 晖, 武 媛. 钛合金热浸铝的研究进展[J]. 沈阳理工大学学报, 2016, 35(4): 85-87. Zhao Hui, Wu Yuan. The research progress of hot-dip aluminizing on titanium alloy[J]. Journal of Shenyang Ligong University, 2016, 35(4): 85-87. [4]吴 裕, 唐 奇, 苏晓峰, 等. 奥氏体不锈钢表面激光熔覆锆涂层的组织及硬度[J]. 金属热处理, 2023, 48(5): 13-15. Wu Yu, Tang Qi, Su Xiaofeng, et al. Microstructure and hardness of laser clad zirconium coating on austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(5): 13-15. [5]Zhang Z G, Peng Y P, Mao Y L, et al. Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures[J]. Corrosion Science, 2012, 55: 187-193. [6]傅宇东, 牛喜庆, 张丽君, 等. Ti6Al4V合金表面热浸镀Ti-Al镀层相组成[J]. 金属热处理, 2015, 40(3): 62-64. Fu Yudong, Niu Xiqing, Zhang Lijun, et al. Phase composition of hot-dipped Ti-Al cladding on Ti6Al4V alloy[J]. Heat Treatment of Metals, 2015, 40(3): 62-64. [7]王院生, 熊 计, 王 均. 工业纯钛热浸镀铝及其抗高温氧化性能的研究[J]. 表面技术, 2010, 39(6): 4-7. Wang Yuansheng, Xiong Ji, Wang Jun. Commercial-purity titanium hot-dip aluminium and its high temperature oxidation resistance[J]. Surface Technology, 2010, 39(6): 4-7. [8]朱 韬, 王树奇, 茅亦舒, 等. Ti6Al4V合金热浸铝研究[J]. 钢铁钒钛, 2013, 34(12): 31-34. Zhu Tao, Wang Shuqi, Mao Yishu, et al. Study on hot-dip aluminizing of Ti6Al4V alloy[J]. Iron Steel Vanadium Titanium, 2013, 34(12): 31-34. [9]李 婷, 高 菲, 傅昊洋, 等. TC4钛合金热浸铝镀层的微观组织结构及性能[J]. 金属热处理, 2017, 42(8): 63-67. Li Ting, Gao Fei, Fu Haoyang, et al. Microstructure and properties of hot dipped aluminum coating on TC4 titanium alloy[J]. Heat Treatment of Metals, 2017, 42(8): 63-67. [10]Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9219-9229. [11]Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122(2-3): 73-93. [12]张 林, 郭 晓, 高建文, 等. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1242. Zhang Lin, Guo Xiao, Gao Jianwen, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel[J]. Acta Metallurgica Sinica, 2020, 56(9): 1239-1242. [13]李 勇. 交变电磁场对真空差压铸造铝合金铸件组织及性能的影响[D]. 南昌: 南昌航空大学, 2013. Li Yong. Effect of alternating electromagnetic field on the microstructure and property of vacuum counter-pressure casting aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2013. [14]何文渊. 电磁场辅助激光熔覆制备Al2O3/Fe901复合涂层组织及性能研究[D]. 镇江: 江苏大学, 2019. He Wenyuan. Microstructure and property of Al2O3/Fe901 composite coating prepared by electromagnetic field assisted laser cladding[J]. Zhenjiang: Jiangsu University, 2019. [15]Aznam I, Mah J C W, Muchtar A, et al. Electrophoretic deposition of (Cu, Mn, Co)3O4 spinel coating on SUS430 ferritic stainless steel: Process and performance evaluation for solid oxide fuel cell interconnect applications[J]. Journal of the European Ceramic Society, 2021, 41(2): 1360-1373. |