[1]张 健, 王 莉, 谢 光, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124. Zhang Jian, Wang Li, Xie Guang, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2023, 59(9): 1109-1124. [2]冯 强, 路 松, 李文道, 等. γ′相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143. Feng Qiang, Lu Song, Li Wendao, et al. Recent progress in alloy design and creep mechanism of γ′-strengthened Co-based superalloys[J]. Acta Metallurgica Sinica, 2023, 59(9): 1125-1143. [3]Mapelli C, Casalino C, Strada A, et al. Comparison of the combined oxidation and sulphidation behavior of nickel- and cobalt-based alloys at high temperature[J]. Journal of Materials Research and Technology, 2020, 9(6): 15679-15692. [4]Lv P, Sun X, Cai J, et al. Microstructure and high temperature oxidation resistance of nickel based alloy GH4169 irradiated by high current pulsed electron beam[J]. Surface and Coatings Technology, 2017, 309: 401-409. [5]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [6]Senkov O N, Daboiku T I, Butler T M, et al. High-temperature mechanical properties and oxidation behavior of Hf-27Ta and Hf-21Ta-21X (X is Nb, Mo or W) alloys[J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105467. [7]Wang C, Le J, Chen K, et al. A novel Co-Ni-Ti-V-based superalloy exhibiting low density and high strength[J]. Materials Science and Engineering A, 2023, 885: 145633. [8]Zhang Y, Yuan S, Fu H, et al. Effects of Ta and Ti content on microstructure and properties of multicomponent Co-Ni-based superalloys[J]. Materials Science and Engineering A, 2022, 855: 143829. [9]Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229-244. [10]Zhao Y Y, Chen H W, Lu Z P, et al. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy[J]. Acta Materialia, 2018, 147: 184-194. [11]Xu W, Li Y, Qu S, et al. High temperature oxidation behaviour of polycrystalline and single crystal Ta stabilized γ′-strengthened Co-Ni-Al-Ta-Cr alloys[J]. Corrosion Science, 2023, 225: 111554. [12]苗小锋, 云海涛, 郑兆然. Ta含量对MCrAlY抗氧化性的影响[J]. 热喷涂技术, 2020, 12(2): 47-51. Miao Xiaofeng, Yun Haitao, Zheng Zhaoran. Effect of Ta content on oxidation resistant of MCrAlY coatings[J]. Thermal Spray Technology, 2020, 12(2): 47-51. [13]Wang H, Liu J, Lei S, et al. Effects of Ta and Y additions on the high temperature oxidation mechanisms of Ni-10Al alloy at 1100 ℃[J]. Vacuum, 2023, 213: 112074. [14]Deng Y, Fu L, Song W, et al. Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation[J]. Separation and Purification Technology, 2023, 311: 123247. [15]Zhang Y T, Fan Z Y, Sun J, et al. Effect of transition metal on the structure and oxidation behavior of ZrB2 (0001): Experimental and theoretical calculations[J]. Computational Materials Science, 2023, 226: 112213. [16]Dai G, Deng R, You X, et al. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases[J]. Journal of Materials Science and Technology, 2022, 116: 11-21. [17]Xie S, Pan Y, Fan Y, et al. Comparative study of the densification kinetics of the FCC phase Al0.3CoCrFeNi and BCC phase AlCoCrFeNi high-entropy alloys during spark plasma sintering[J]. Journal of Alloys and Compounds, 2023, 965: 171358. [18]Zhang H, Tong Y, Cao S, et al. Outstanding yield strength of CoCrNiTa0.1 medium entropy alloy under the synergistic regulated with nanoprecipitation and grain refining[J]. Journal of Alloys and Compounds, 2022, 919: 165715. [19]Zhang D D, Zhang J Y, Kuang J, et al. Low modulus-yet-hard, deformable multicomponent fibrous B2-phase making a medium-entropy alloy ultra-strong and ductile[J]. Scripta Materialia, 2023, 222: 115058.[20]Wu T, Yu L, Chen G, et al. Effects of Mo and Nb on the microstructure and high temperature oxidation behaviors of CoCrFeNi-based high entropy alloys[J]. Journal of Materials Research and Technology, 2023, 27: 1537-1549. [21]张 华, 王乾廷, 唐群华, 等. Al0.5FeCoCrNi(Si0.2, Ti0.5)高熵合金的高温氧化性能[J]. 腐蚀与防护, 2013, 34(7): 561-565. Zhang Hua, Wang Qianting, Tang Qunhua, et al. High temperature oxidation property of Al0.5FeCoCrNi(Si0.2, Ti0.5) high entropy alloys[J]. Corrosion and Protection, 2013, 34(7): 561-565. [22]Li L, Wang L, Liang Z, et al. Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys[J]. Materials and Design, 2022, 224: 111291. |