[1]Han D. High performance steels: Initiative and practice[J]. Science China Technological Sciences, 2012, 55(7): 1774-1790. [2]狄国标, 刘振宇, 郝利强, 等. 海洋平台用钢的生产现状及发展趋势[J]. 机械工程材料, 2008, 32(8): 1-3. Di Guobiao, Liu Zhenyu, Hao Liqiang, et al. Present production state and development tendency of offshore platform steels[J]. Materials for Mechanical Engineering, 2008, 32(8): 1-3. [3]Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium vanadium microalloyed steel: The significance of high frequency induction tempering[J]. Materials Science and Engineering A, 2014, 618: 112-117. [4]王国栋. 高质量中厚板生产关键共性技术研发现状和前景[J]. 轧钢, 2019, 36(1): 1-8, 30. Wang Guodong. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 2019, 36(1): 1-8, 30. [5]康永林. 中国中厚板产品生产现状及发展趋势[J]. 中国冶金, 2012, 22(9): 1-4, 14. Kang Yonglin. Production status and development trend of medium and heavy plate in China[J]. China Metallurgy, 2012, 22(9): 1-4, 14. [6]黄 维, 张志勤, 高真凤, 等. 日本海洋平台用厚板开发现状[J]. 轧钢, 2012, 29(3): 38-42. Huang Wei, Zhang Zhiqin, Gao Zhenfeng, et al. Development status of steel plate used for offshore platform in Japan[J]. Steel Rolling, 2012, 29(3): 38-42. [7]Liu Y, Shi L, Liu C, et al. Effect of step quenching on microstructures and mechanical properties of HSLA steel[J]. Materials Science and Engineering A, 2016, 675: 371-378. [8]朱建业. 中厚板TMCP工艺及其应用进展分析[J]. 山西冶金, 2022, 45(1): 158-159, 162. Zhu Jianye. Analysis of TMCP process and its application progress of medium and heavy plate[J]. Shanxi Metallurgy, 2022, 45(1): 158-159, 162. [9]王壮飞. 新一代TMCP工艺下微合金钢组织演变规律与性能研究[D]. 沈阳: 东北大学, 2018. [10]马国金, 何元春, 董占斌, 等. TMCP工艺冷速对FH40低温船舶用钢组织与性能的影响[J]. 河北冶金, 2022(11): 27-31. Ma Guojin, He Yuanchun, Dong Zhanbin, et al. Effect of cooling rate of TMCP process on microstructure and properties of FH40 low temperature marine steel[J]. Hebei Metallurgy, 2022(11): 27-31. [11]陈 斌, 赵征志, 闫 远, 等. 不同贝氏体区等温温度下TRIP钢的组织和性能[J]. 材料热处理学报, 2016, 37(9): 124-128. Chen Bin, Zhao Zhengzhi, Yan Yuan, et al. Microstructure and properties of TRIP steel under different bainitic isothermal temperatures[J]. Transactions of Materials and Heat Treatment, 2016, 37(9): 124-128. [12]张海刚, 韩翠红, 李 民. 贝氏体等温温度对TRIP980高强钢微观组织及力学性能的影响[J]. 热加工工艺, 2022, 51(16): 140-142, 148. Zhang Haigang, Han Cuihong, Li Min, et al. Influence of bainite isothermal temperature on microstructure and mechanical properties of TRIP980 high strength steel[J]. Hot Working Technology, 2022, 51(16): 140-142, 148. [13]金传伟, 张继明, 吴园园. 针状铁素体X65管线钢中MA岛结构表征及其对疲劳裂纹扩展的影响[J]. 材料热处理学报, 2023, 44(6): 143-149. Jin Chuanwei, Zhang Jiming, Wu Yuanyuan, et al. Characterization of MA islands structure in acicular ferrite X65 pipeline steel and its effect on fatigue crack propagation[J]. Transactions of Materials and Heat Treatment, 2023, 44(6): 143-149. [14]阮红志, 赵爱民, 赵征志, 等. 高钢级X100管线钢中的M-A岛[J]. 北京科技大学学报, 2013, 35(4): 474-480. Ruan Hongzhi, Zhao Aimin, Zhao Zhengzhi, et al. M-A islands in high grade X100 pipeline steel[J]. Journal of University of Science and Technology Beijing, 2013, 35(4): 474-480. [15]田亚强, 张明山, 高天佐, 等. 贝氏体淬火等温温度对低碳硅锰钢组织转变及力学性能影响[J]. 塑性工程学报, 2016, 23(4): 136-140. Tian Yaqiang, Zhang Mingshan, Gao Tianzuo, et al. Effect of bainitic quenching isothermal temperature on microstructure and mechanical properties of low carbon Si-Mn steel[J]. Journal of Plasticity Engineering, 2016, 23(4): 136-140. [16]潘红波, 田亚强, 张明山, 等. 低碳硅锰钢奥氏体区形变对贝氏体组织及力学性能影响[J]. 金属热处理, 2017, 42(8): 102-105. Pan Hongbo, Tian Yaqiang, Zhang Mingshan, et al. Effect of austenite deformation on bainite microstructure and mechanical properties of low carbon Si-Mn steel[J]. Heat Treatment of Metals, 2017, 42(8): 102-105. [17]程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述[J]. 材料导报, 2023, 37(7): 120-131. Cheng Xuan, Gui Xiaolu, Gao Guhui. Retained austenite in advanced high strength steels: A review[J]. Materials Reports, 2023, 37(7): 120-131. |