[1]张景新, 孟嘉乐, 吕坤键, 等. 我国氢应用发展现状及趋势展望[J]. 新材料产业, 2021(1): 36-39. [2]陈祖志, 管 坚, 黄强华, 等. 氢能产业发展现状及其对特种设备行业的机遇和挑战[J]. 中国特种设备安全, 2019, 35(9): 1-13. Chen Zuzhi, Guan Jian, Huang Qianghua, et al. Current situation of hydrogen energy industry and opportunities and challenges of special equipment industry arising therefore[J]. China Special Equipment Safety, 2019, 35(9): 1-13. [3]Zhang Yanghuan, Zhi Chaojia, Ze Mingyuan, et al. Development and application of hydrogen storage[J]. Journal of Iron and Steel Research(International), 2015, 22(9): 757-770. [4]Zuttel A. Hydrogen storage methods[J]. Naturwissenschaften, 2004, 91(4): 157-172. [5]Ley M B, Jepsen L H, Lee Y S, et al. Complex hydrides for hydrogen storage—New perspectives[J]. Materials Today, 2014, 17(3): 122-128. [6]马通祥, 高雷章, 胡蒙均, 等. 固体储氢材料研究进展[J]. 功能材料, 2018, 49(4): 4001-4006. [7]滕 越, 陈国宏, 魏金韬, 等. Ⅲ型储氢气瓶内胆6061-T6铝合金的氢致损伤研究进展[J]. 装备环境工程, 2021, 18(4): 103-108. Teng Yue, Chen Guohong, Wei Jintao, et al. Research progresses of hydrogen induced damage of the 6061-T6 alloy used as liner of type Ⅲ hydrogen storage cylinder[J]. Equipment Environmental Engineering, 2021, 18(4): 103-108. [8]刘 伟, 吴远志, 邓 彬, 等. 挤压态6061铝合金的力学性能及显微组织[J]. 金属热处理, 2020, 45(9): 172-177. Liu Wei, Wu Yuanzhi, Deng Bin, et al. Mechanical properties and microstructure of extruded 6061 aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(9): 172-177. [9]杨淑晟. Al-5.10Cu-0.65Mg(wt.%)合金微观组织与性能研究[D]. 长沙: 湖南大学, 2014. Yang Shusheng. Study of the microstructure and properties in A1-5.10Cu-0.65Mg(wt.%) aluminium alloy[D]. Changsha: Hunan University, 2014. [10]辛仕伟. Al-Cu-Mg-Ag高强耐热铸造铝合金成分与热处理工艺的研究[D]. 北京: 机械科学研究总院, 2018. Xin Shiwei. Study on the composition and heat treatment process of Al-Cu-Mg-Ag high strength and heat resistant cast aluminum alloy[D]. Beijing: China Academy of Machinery Science and Technology, 2018. [11]王双宝. Al-Cu-(Mg)合金的成分、工艺、结构及性能研究[D]. 长沙: 湖南大学, 2013. Wang Shuangbao. The research on composition, structure, heat treatment and properties of Al-Cu-(Mg) alloys[D]. Changsha: Hunan University, 2013. [12]孙 巍, 冯艳飞, 祝 哮, 等. 均匀化工艺对2024高强度铝合金组织及性能的影响[J]. 有色金属加工, 2021, 50(1): 61-66. Sun Wei, Feng Yanfei, Zhu Xiao, et al. Effect of homogenization process on microstructure and properties of 2024 high-strength aluminum alloy[J]. Nonferrous Metals Processing, 2021, 50(1): 61-66. [13]张彦民. 2024高强铝合金热处理工艺研究[J]. 热加工工艺, 2020, 49(24): 122-124. Zhang Yanmin. Study on heat treatment process of 2024 high strength aluminum alloy[J]. Hot Working Technology, 2020, 49(24): 122-124. [14]寇琳媛, 王 冠, 马 超, 等. 停放时间对6061铝合金性能及微观组织的影响[J]. 中国有色金属学报, 2020, 30(4): 750-762. Kou Linyuan, Wang Guan, Ma Chao, et al. Influence of quench delay time on mechanical properties and microstructure of 6061 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 750-762. [15]刘 萌, 李新亚, 臧 勇, 等. 固溶成形工艺对6016铝合金组织及力学性能的影响[J]. 金属热处理, 2023, 48(2): 138-143. Liu Meng, Li Xinya, Zang Yong, et al. Effect of solution forming process on microstructure and mechanical properties of 6016 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(2): 138-143. |